
AutoMate ™

Communications

Driver

User’s Manual

Version 2.625 --- October 21, 1996

Copyright © 1988 - 1999, Automation Consulting Services, Inc. All rights reserved.

Subject to change without notice.

SOFTWARE LICENSE AGREEMENT

IMPORTANT! The enclosed materials are provided to you on the express condition that you agree
to this Software License. By opening the diskette envelope or using any of the enclosed diskette(s)
you agree to the following provisions. If you do not agree with these license provisions, return these
materials to Automation Consulting Services, Inc., in original packaging with seals unbroken, within 3
days from receipt, for a refund.

1. This software and the diskette on which it is contained (the “Licensed Software”), is li-
censed to you, the end user, for your own internal use. You do not obtain title to the
Licensed Software or any copyrights or proprietary rights in the Licensed Software.
You may not transfer, sub-license, rent, lease, convey, copy, modify, translate, convert
to another programming language, decompile, or disassemble the Licensed Software
for any purpose.

2. The Licensed Software is provided “as-is”. All warranties and representations of any
kind with regard to the Licensed Software are hereby disclaimed, including the implied
warranties of merchantability and fitness for a particular purpose. Under no
circumstances will the Manufacturer or Developer of the Licensed Software be liable
for any consequential, incidental, special, or exemplary damages even if apprised of the
likelihood of such damages occurring. Some states do not allow the limitation or
exclusion of liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you.

Incorporated Driver Amendment

If you own the ACS AutoMate BASIC driver (Incorporated Version), this license is
amended to provide for the free or for-profit distribution of software incorporating
BASIC Driver code as follows: you may distribute executable programs containing the
complete and unaltered ACS AutoMate BASIC Driver (Incorporated Version). The
Incorporated Version Libraries may not be copied, sold, modified, distributed, or used
by more than one user at a time; they are treated as Licensed Software as described
above. You can only distribute the Driver as a part of self-standing executable code
(EXE files). No royalties or additional licenses are required to distribute such
standalone programs.

For Windows DLLs, you may distribute the DLL (distribution) version without
royalties, but you may not distribute the Development (VBX) version. It is treated as
Licensed Software as described above.

Table of Contents

Revision 2.625 October 21, 1996 Page i

New in Version 2.5...1
R-Net PC Link..1
New in Version 2.0 ...2

Using the Driver...1

Copy Protection ...4
Hardware Lock...4

Cabling...5
PC Serial Port...5
AT Serial Port ..6
The Cable ...6

Interfaces ...7
Interpreted BASIC..7
QuickBASIC V4.5..9
Turbo PASCAL V7.0 ...12
C ..14
Visual Basic..16
Windows 3.1...19
Windows 95/NT ...22

Using the Driver over RNET..23

BASDRV and the Serial Comm. Card ..25

Error Codes ...26

Function Quick Reference by Function Number..27
Variable Names used in Quick Reference Table...31

Function Summary ...33
RDPNT --- Read Value of a Point...34
WRPNT --- Write Value to a Point ...35
RDREG --- Read Register Values...36
WRREG --- Write Values to Registers..37
RDFRCT --- Read Input Forcer Table ..38
WRFRCT --- Write Input Forcer Table...39
RDSTAT --- Read Processor Status..40
WRSTAT --- Write Processor Status ..41
RDREGLST --- Read List of Registers ...42
WMULPT --- Write Multiple Points ...43
RDREGLIM --- Read Register Limit ..45
WRREGLIM --- Write Register Limit...46
ROFRCT --- Read Output Forcer Table..47
FRCCOIL --- Force Output ..48
UNFRCCOIL --- Unforce Output ...49

Page ii October 21, 1996 Revision 2.625

INSSEQ --- Insert Sequence... 50
DELSEQ --- Delete Sequence .. 51
SRCHSEQ --- Find Sequence... 52
SRCHN --- Find Next Occurrence of Sequence .. 53
SRCHU --- Get Previous Sequence .. 54
SRCHD --- Get Next Sequence .. 55
SRCHTOP --- Get First Sequence .. 56
CHKSEQ --- Check for a Sequence.. 57
CHKN --- Check for next Occurrence of Sequence... 58
SETRNET --- Set Number of Nodes on RNET .. 59
SETGWAY --- Set Gateway Parameters .. 60
WHORU --- Read Identifying Information.. 61
SETCOMM --- Set Communication Parameters ... 63
CLRMEM --- Clear Application Memory ... 64
MEMUSE --- Read Memory Use Statistics... 65
RDIOCFG --- Read I/O Configuration Table .. 67
WRIOCFG --- Write I/O Configuration Table .. 68
REQACC --- Request Protected Access ... 69
CANACC --- Cancel Protected Access... 70
MEMDIAG --- Run Memory Diagnostic .. 71
IODIAG --- Run I/O Diagnostic ... 72
GWAYDIAG --- Run Gateway Diagnostic ... 73
SETNOD --- Set Destination Node .. 74
SETDSLT --- Set Destination Slot ... 75
SETSSLT --- Set Originating Slot Number... 76
SETBAUD --- Set Communication Rate... 77
SETSNG --- Set Single-Processor Mode .. 78
CLROFRC --- Clear Output Forcer Table... 79
AUTOCOM --- Establish Communications... 80
SRBCONV --- Convert String to Register and Bit.. 81
SRCONV --- Convert String to Register .. 82
SETDLA --- Set Communications Wait.. 83
WORDAR --- Unpack Word into Array ... 84
ARWORD --- Pack Array into Integer.. 85
SETOND --- Set Origin Node Number... 86
SETMSK --- Set Interrupt Mask .. 87
STPORT --- Set Communications Port... 88
RDCHEK --- Read AutoMate Checksums.. 89
STEXT --- Send Text to Serial Port ... 90
FMO2MS --- Motorola Floating Point to Microsoft.. 91
FMS2MO --- Microsoft Floating Point to Motorola.. 92
FRMPRO --- Frame Protect Options .. 93
OFF --- Deactivate Driver .. 94
PSYST --- Set Port System Parameters .. 95
KEYPORT --- Set Hardware Key port ... 98
PCLINK --- Set Up R-Net PC Link.. 99

New in Version 2.5

There have been several important changes in the operation of the AutoMate™ Communications
Driver since the last version. If you are updating from a previous version of the Driver, please read
this section carefully to ensure proper operation.

Resident Driver

The Resident driver has been discontinued. The complete functionality of the Driver is now contained
in what was formerly the binding in previous versions. For example, for Quick Basic version 4.5, the
whole Driver is contained in the Quick Libraries.

There is no longer any resident portion of the Driver to load at the command line. In the case of
Quick Basic, starting QB with the normal command line:

QB program /L QBDRV

will load the driver automatically. There is no longer any need to load the QBDRV.EXE file from the
DOS command line before starting your application; indeed, the new version does not use an
executable file.

SentinelC Key

In order to improve reliability, we have changed to a new type of hardware key manufactured by
Rainbow Technologies. Unlike previous keys, this key can be used on parallel ports other than LPT1.
To change the port where the Driver will look for the key, call BASDRV with the function synopsis:

CALL BASDRV(B_KEYPORT, STATUS, PORTN, B, B, B)

where PORTN is the integer number of the parallel port where the key is located (1 to 3).

If you are using the default port, LPT1, there is no need to call the KEYPORT function. Rather than
checking the key once upon loadup, the Driver now checks the key at random intervals. The Driver
will return a status of -2 if the key is not detected.

The KEYPORT command is described in more detail on page 99.

Support for “software key” protection has been discontinued.

R-Net PC Link

Beginning with Version 2.6, the Driver supports the Reliance R-Net PC Link card, which provides
direct communications over R-Net without needing a Gateway.

Page ii October 21, 1996 Revision 2.625

New in Version 2.0

Version 2.0 is a complete rewrite of the AutoMatetm Driver that introduces a number of new features,
including:

• Interrupt-driven communications to increase reliability even under multitasking operating
environments like DesqView™ and Microsoft Windows 3.0.

• More thorough error checking on caller parameters.

• Support for COM3 and COM4, even on systems that do not automatically detect these
ports.

• Support for Microsoft Windows™ version 3.0 or later via the AutoMate Communications
Driver DLL.

Warning! Version 2.0 of the Driver uses your computer’s hardware interrupts to
ensure reliable communications. It is ABSOLUTELY ESSENTIAL that
you allow the Driver to deactivate these interrupts before you exit your
application program. If you fail to do this, your computer may crash
unpredictably, even long after you have left your program.

Please see the OFF command, page 94, for more information.

AutoMate Communications Driver

Revision 2.625 October 21, 1996 Page 1

Introduction

The BASDRV AutoMate Communications Driver is a utility that allows programs to communicate with
Reliance Electric AutoMate programmable controllers.

The driver provides an easy way for the user to develop programs that access an AutoMate
processor’s points, registers, and application memory. Information is passed to and from the proces-
sor via normal integer and string variables. The BASIC “CALL” statement provides access to the
communication functions.

BASDRV communicates with the AutoMate processor via your PC’s serial port or over the R-Net PC
Link Board.

Using the Driver

The Driver comes in two different “flavors,” memory-resident and linkable. To use the Resident
Driver, you load it once from the DOS command level. After the driver is in memory, it will remain
there until you reset or turn off the computer. The driver consumes about 8 K of user memory.
Beginning with Version 2.5, only Turbo Pascal uses a Resident driver.

Other languages, such as C and QuickBASIC, use a “linkable” Driver that becomes part of your
application program. A program that uses a linkable Driver has no TSR (memory resident) portion to
load. To run an application that uses the linkable Driver, you need only attach the copy protection
device to the parallel port and run the application normally.

There is a special linkable version of the Driver, called the “Incorporated Driver,” which is intended
for commercial developers and users who will need to run applications that use the Driver on many
computers. Application programs created with the Incorporated Driver can be distributed without
royalties, though the Driver libraries remain under a single-user license.

The AutoMate™ driver is available with interfaces to a variety of languages, including IBM
Interpreted BASIC, Microsoft QuickBASIC, Microsoft C, and Turbo PASCAL. The individual
interfaces are described at the end of this section, just before the function synopses.

The Windows Driver DLL

ACS provides a version of the Driver that runs under the Microsoft Windows™ operating
environment. This Driver is automatically loaded by your application at runtime. The Driver DLL
provides two caller interfaces, one suitable for Visual BASIC (and other languages that require the
PASCAL calling convention), and one used for languages that support the C calling convention. Both
interfaces are found in the same DLL.

General Information

All of the language interfaces share the same general operating principles.

AutoMate Communications Driver

Page 2 October 21, 1996 Revision 2.625

For the Resident driver, there is memory-resident portion of the driver that must be loaded before you
can access the AutoMate device. You must load this resident portion directly from PC-DOS. Once it
has been loaded, it will remain resident and available until you turn off or reset your computer.

This is especially important for languages like Turbo Pascal and Interpreted BASIC that provide a
complete operating “environment.” For these languages, you must always load the Driver before
loading the language environment.

The individual language interfaces provide the necessary facilities to invoke the resident portion of the
driver. Usually, the language interface is a small object file or code segment that simply routes your
commands and data to and from the Driver’s resident portion.

The Linkable or Incorporated Driver is loaded or linked directly into your application program. It
does not require any resident portion. Each language has its own method for loading external
modules; consult the relevant section (or your language’s documentation) for more information.

“Include” files

Many languages, such as C and Turbo PASCAL, have facilities for “include” or “unit” files that can
establish constants and function definitions. Wherever possible, ACS has supplied appropriate include
files to make programming easier.

Sample Files

Each version of the Driver is supplied with one or more demonstration programs. Please take the time
to examine and run these demonstrators; a few minutes with the samples can save you a lot of
frustration. Since the sample programs are known to run, you can use them to test your hardware
setup. If the demonstration programs won’t run, your own code probably won’t either. Also, since
we wrote the samples, it will be easy for us to diagnose problems encountered while working with
them.

The sample programs can give you a head start on your own application by showing you proven ways
to construct an application program. In fact, you may wish to simply “cannibalize” the demonstrator
programs to fit your own application.

Help !

If you have trouble, have any questions about how the driver works, or want advice about special
applications, please be sure to contact us... a two minute phone call could save you hours of
frustration. We are more than willing to help you use any unmodified software provided by ACS. We
will also answer questions about your programs (and help you debug programs that use BASDRV) as
time permits.

If you find a bug in BASDRV, be sure to let us know. To help us fix the bug, document it as completely
as possible. If you are not sure whether the bug is in your program or the driver, please ship us your
program on a PC-compatible disk with documentation of the problem. If the problem is in the driver,
we will locate and repair it and return your disk as quickly as we can.

AutoMate Communications Driver

Revision 2.625 October 21, 1996 Page 3

Please read the function descriptions carefully before you use them to save yourself time and trouble
later. Be sure to save your program frequently! Always save it before you run it the first time. If
you have made a mistake (such as a BASIC BASDRV call with less than six parameters), the computer
may crash and have to be reset. Unfortunately, BASIC makes absolutely no provision for the type of
error checking that would prevent these problems, so you have to be very careful.

Good luck!

AutoMate Communications Driver

Page 4 October 21, 1996 Revision 2.625

Copy Protection

Unfortunately, software piracy is a problem that plagues all program developers: the temptation to
copy an unprotected disk is great, and there is little actual danger to the pirate. But copy protection
often offends users and sometimes involves unnecessary “hassles”. In order to keep everyone honest
with a minimum of trouble for the user, ACS has decided to issue all of its single-user Driver products
in copy-protected form.

Note. Incorporated versions of the Driver are not copy protected.

Hardware Lock

Programs protected with a Hardware Lock come on ordinary floppy diskettes. You can (and should)
make a backup copy of the protected files, using the DOS DISKCOPY command if you wish. The pro-
tection is incorporated into the files themselves and into the locking device.

The Hardware Lock itself is a small device resembling a “gender changer”. It has two 25-pin
connectors on it, one male and one female.

When you run a program protected with a Hardware Lock, the software will examine your computer’s
parallel printer port. If the correct Hardware Lock is found, the program runs normally. If the locking
device is not present, the Driver will return an error code.

To use the Hardware Lock, simply copy the original program diskettes into a directory on your hard
disk. Next, plug the male end of the Hardware Lock device into your computer’s parallel printer port
(LPT1). If there is a printer already attached to your system, simply plug its cable into the female end
of the Hardware Lock.

Once you have attached the locking device, you are ready to run the software. Your computer should
operate just as before; the device is only active when the software specifically queries it. The Lock is
also transparent to printing.

By default, the Driver looks for the Hardware Key on printer port LPT1. To change the port where
the Driver will look for the key, call BASDRV with the function synopsis:

CALL BASDRV(B_KEYPORT, STATUS, PORTN, B, B, B)

where PORTN is the integer number of the parallel port where the key is located (1 to 3). See the
description of the KEYPORT command below (page 99) for more details.

If you are using the default port, LPT1, there is no need to call the KEYPORT function. The Driver will
return a status of -2 if the key is not detected.

AutoMate Communications Driver

Revision 2.625 October 21, 1996 Page 5

Cabling

Normally, your ACS software will be supplied with a cable suitable for connecting the PC to the
AutoMate processor, Gateway, or Serial Communications Card.

However, some of our customers find that they need to make their own cables. This section describes
the cable and pinouts at each end of the connection. The serial port pinouts are included for reference,
since they are not often described in computer manuals.

PC Serial Port

The PC serial port is a DB25M (25-pin Male) connector. Here are its pinouts (pins not marked are
No Connection):

Pin Direction Signal

1 Shield Ground

2 Output Transmit Data

3 Input Receive Data

4 Output Request to Send

5 Input Clear to Send

6 Input Data Set Ready

7 Signal Ground

8 Input Carrier Detect

9 Output+ Transmit Current Loop

11 Output- Transmit Current Loop

18 Input+ Receive Current Loop

20 Output Data Terminal Ready

22 Input Ring Indicator

25 Input- Receive Current Loop

Note: Only strictly IBM-compatible serial ports implement the 20ma current loop
interface.

AutoMate Communications Driver

Page 6 October 21, 1996 Revision 2.625

AT Serial Port

The PC AT serial port is a DB9M (9-pin Male) connector. Here are its pinouts:

Pin Direction Signal

1 Input Carrier Detect

2 Input Receive Data

3 Output Transmit Data

4 Output Data Terminal Ready

5 Ground

6 Input Data Set Ready

7 Output Request to Send

8 Input Clear to Send

9 Input Ring Indicator

The Cable

You can use the Driver with a three-wire (Transmit Data, Receive Data, and Ground) cable. ACS
uses the following cable:

Conductor Signal PC Pin AT Pin AutoMate Pin

1 Ground 7 5 7

2 TD 2 3 3

3 RD 3 2 2

AutoMate Communications Driver - Interfaces

Revision 2.625 October 21, 1996 Page 7

Interfaces

Interpreted BASIC

The Resident driver is provided in a file called BASDRV.EXE. No Incorporated Version is available for
Interpreted BASIC. To load the driver into memory, type:

BASDRV r

at the PC-DOS command level. The driver will load, display its signon banner, and return to PC-
DOS.

Once the driver is resident in memory, you can enter and leave BASIC as many times as you wish.
You do not have to reload the driver unless you reset the computer.

When you load the driver, it stores the segment number where it resides in the inter-application
communication area reserved by DOS. The segment number can be found at address 0:4F2.

Once you have loaded BASIC, you will need the segment number to call the driver. To get it, you
should include the following statements in you program:

DEF SEG = 0[Sets user segment to 0]
BASSEG = PEEK(&H4F2)+PEEK(&H4F3)*256 [Read BASDRV seg.]
DEF SEG = BASSEG[Establish access to driver]
BASDRV = 0[Call to offset 0 within segment]

These statements determine the location of the driver by reading it from address 0:4F2 and then set up
for calls to the driver. Assigning 0 to BASDRV merely sets the destination address within the segment
to 0.

After you have executed these statements, you can call the driver with a BASIC CALL statement of
the form:

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

where FNO is the function number, STATUS is the return code, and ARG1 through ARG4 are
parameters.

YOU MUST ALWAYS CALL THE DRIVER WITH SIX PARAMETERS. The BASIC machine language
interface is not very flexible; the only straightforward way to make the large number driver functions
readily accessible is to use a fixed length parameter block and a series of function codes.

The CALL statement always expects variable parameters. There is no way to “call by value”.
Therefore, you must always assign constant parameters to a variable before executing the CALL.
Also, you should be very careful about the types of variables in the CALL. There is no way for the
driver to make sure that you have passed the right number and type of parameters, so you may disrupt
your system if you make a mistake. In fact, the most common type of problem that you will
experience will probably be bizarre driver behavior due to incorrect parameter types or number.

AutoMate Communications Driver - Interfaces

Page 8 October 21, 1996 Revision 2.625

You should also be sure that variables are defined before you pass them to the driver. BASIC
sometimes “hangs up” if you pass an undefined parameter to a machine language subroutine.

Since nearly all of the parameters required by BASDRV are integers, you may wish to use the DEFINT
statement at the beginning of your program to define one or more letters as “default” integers. If you
do so, you can use variables beginning with those letters to communicate with the driver. This method
will avoid many annoying and difficult to trace problems.

The first parameter in the BASDRV CALL statement (FNO in the above example) is always the
function number. This integer number selects the driver function that you wish to use. There are
about fifty standard functions provided by the driver.

The second parameter (STATUS in the sample call) is used to communicate error conditions. Any
nonzero value indicates a problem occurred during the transfer. See the table of error values for more
complete information. You should check the status codes after each call.

The third, fourth, fifth, and sixth parameters vary according to the function being called.

Sample Files

Two BASIC program files are provided on the distribution diskette to help you use BASDRV. They are
named BDHEADER.BAS and BDSHORT.BAS. BDHEADER.BAS contains a commented header that takes
care of setup for BASDRV calls. It declares variables beginning with ‘B’ to be integers and assigns
function numbers to named variables to make calling BASDRV functions easier. For example, function
number 29 (WHORU, read identifying information) is assigned to the variable B.WHORU.

BDHEADER.BAS also performs the standard call to establish communications.

BDSHORT.BAS is a version of BDHEADER.BAS which has all of the comments removed.

We suggest that you start with one of the header files when developing programs the use BASDRV.
Doing so will help you avoid some of the more annoying bugs that you might otherwise encounter.

There is another program file, called BDEMO.BAS, on the distribution diskette. This program is in-
tended as a sample of what can be done with BASDRV. Intended for the A20/A30/A40, it provides a
set of functions for AutoMate program testing. To use it, issue the following commands at DOS com-
mand level:

BASDRV r
BASIC BDEMO r

It may take several seconds for the program to display anything. Once the program is running, its
operation is more or less self-explanatory.

BDEMO should provide a good introduction to BASDRV’s capabilities. Feel free to adapt or modify
BDEMO if you wish. We recommend that you at least look over BDEMO’s program listing to get a
better feel for how the driver operates.

AutoMate Communications Driver - Interfaces

Revision 2.625 October 21, 1996 Page 9

QuickBASIC V4.5

Both Incorporated and Single-User Linkable versions of the Driver are available for Microsoft
QuickBASIC Version 4.5.

The QuickBASIC 4.5 Driver is new (and completely incompatible) with previous versions of the
QuickBASIC Driver.

Important Note! The QuickBASIC 4.5 Driver is not compatible with the BASIC interpreter, as past
versions were, nor is it compatible with QuickBASIC prior to V4.5. This Driver can ONLY be used
with QuickBASIC Version 4.5 or later.

When entering QuickBASIC, you must load the Driver when you load QB in order to be able to call it.
To do this, make sure that the Quick Library file QBDRV.QLB is in the current directory. Then type:

QB <BASIC file> /L QBDRV r

This command loads QuickBASIC with the Driver resident. If you do not load QBDRV, you will get
“Unresolved Subprogram Reference” errors because the Driver is not loaded.

If you are using a Single-User Linkable version of the Driver, the software will randomly check for the
presence of the Hardware Key on the parallel port. If the key is not detected, the Driver will return a
STATUS of -2.

If you did not load the resident portion of the Driver into memory before running QuickBASIC, the
binding will return a STATUS of -2.

To load the driver and QuickBASIC with the supplied QuickBASIC demo program QBDEMO, type
the following command:

QB QBDEMO /L QBDRV r

Note that the file BASDRV.BI (the Driver Include file), found on the distribution disk, must be in the
current directory before you try to compile the demo.

Press f+% to run the demo. Make sure that you have connected the communications cable to
the AutoMate before starting the program.

Converting from the Interpreter

If you are converting a program to QB from the BASIC Interpreter version of the Driver, you will
have to make certain changes to your programs. When using the interpreted BASIC binding, you
included the following instructions:

DEF SEG = 0
BASSEG = PEEK(&H4F2) + PEEK(&H4F3)*256
DEF SEG = BASSEG
BASDRV = 0
IF BASSEG = 0 THEN PRINT”Driver not installed.”:END

AutoMate Communications Driver - Interfaces

Page 10 October 21, 1996 Revision 2.625

These instructions are not needed when using the QuickBASIC binding, and should not be included.
In fact, if you do include them, QuickBASIC may crash. The QuickBASIC binding performs the
equivalent of these operations automatically on the first CALL BASDRV instruction. However, you
should check for a return status of -2 in case the Driver resident portion was not loaded.

Constant Values

QuickBASIC version 4.5 will automatically create “variables” to contain numeric constants in function
calls. This eliminates the irksome process of assigning values to variables, then passing them in the
function call. For example, you can set the destination node to 3 with the command:

CALL BASDRV(B_SETNOD, STATUS, 3, B, B, B)

There is no need to assign 3 to a variable before calling the Driver; QuickBASIC will create
“pseudovariables” automatically that contain the constant.

MEMUSE : Memory Usage

In order to support the AutoMate 40, which can have more than 32K of memory, the Driver MEMUSE

uses longword integers. In QuickBASIC, use the DIM … AS LONG statement to create a longword ar-
ray. The QBDEMO program has a sample MEMUSE call that you may wish to examine.

DECLARE & Header file

For your convenience, we have included a “Header” include file which defines all of the QBDRV

function numbers as CONSTants. This file is called BASDRV.BI. You may wish to use the $INCLUDE

metacommand to bring this file into your BASIC Driver programs.

WARNING! Do Not use the old (Driver version 1.2 or earlier) include file with the
Version 2.0 Driver. This will cause your program to crash!

The Include file also includes the statements:

DECLARE SUB BASDRV CDECL (BYVAL NF AS INTEGER, SEG ST AS
INTEGER, SEG P1 AS ANY, SEG P2 AS ANY, SEG P3 AS ANY, SEG P4
AS ANY)

DECLARE SUB BASDRVOFF CDECL ()

These statements must be included in all QB programs that call the Driver, especially if you are con-
verting from an older version of the Driver. It will cause QuickBASIC to send segmented addresses
to the Driver, in addition to making sure that you always call BASDRV with the proper number of
parameters.

If you are upgrading from a previous version of the Driver, make sure that you are using the new
version of the Include file, or that the declarations in your program look like those shown above. If
you use the old declarations with the new Driver, your program is guaranteed to crash!

AutoMate Communications Driver - Interfaces

Revision 2.625 October 21, 1996 Page 11

Making EXE files

You will need the QBDRV.LIB file (supplied with the driver) when you go to create EXE files using the
QuickBASIC “Make EXE” command (Run menu), or if you want to compile and link from the DOS
command line. This file should be in the current directory when you invoke the Make EXE command;
QB will automatically incorporate the code into the output EXE file.

Incorporated Version

If you are using the Incorporated Version of the Driver, most of this section still applies to you, with
one important exception: the file names and load procedures are slightly different. The Incorporated
Driver comes in two files, QB4INC.QLB and QB4INC.LIB. These Libraries contain the complete Driver
machine code for direct incorporation into your application programs.

The Incorporated Version QB command is:

QB file /L QB4INC r

This command will load QuickBASIC with the QB4INC.QLB library resident. If you do not load the
Library, you will get “unknown subprogram” errors.

Normally, you will do all of your program development with the QLB library, then make EXE files to
distribute for multiple stations or other users. Remember! The Incorporated Driver License does not
allow you to distribute the original library files; you can only distribute programs that incorporate the
Libraries!

You will need the QB4INC.LIB file when you go to create EXE files using the QuickBASIC “Make EXE”
command (Run menu), or if you want to compile and link from the DOS command line. This file
should be in the current directory when you invoke the Make EXE command; QB will automatically in-
corporate the code into the output EXE file.

As an example, to run the supplied QBDEMO program, type:

QB QBDEMO /L QB4INC r

at the DOS prompt, then press f+% to run as usual. Note that no resident portion need be
loaded beforehand. Be sure that the QuickBASIC header file, BASDRV.H, is present in the current
directory when you load the Demo.

We have also supplied an EXE version of the QBDEMO program. To run it, type “QBDEMO r”
at the DOS command line. This file was made with the “Make EXE … Standalone” command on
QuckBASIC’s Run menu.

AutoMate Communications Driver - Interfaces

Page 12 October 21, 1996 Revision 2.625

Turbo PASCAL V7.0

The Turbo PASCAL binding is very similar to the standard BASIC binding. The only differences con-
cern the actual driver call. Again, single-user and Incorporated (non-copy-protected) versions of the
Driver are available.

If you are using a Single-User Linkable version of the Driver, the software will randomly check for the
presence of the Hardware Key on the parallel port. If the key is not detected, the Driver will return a
STATUS of -2.

The standard BASIC version documentation still applies to the Turbo binding. There are only two
differences to keep in mind.

First, the Turbo binding returns the STATUS word as its return value instead of assigning it to a
parameter. In other words, when you execute the basdrv function, it returns the STATUS value.
This should be zero under normal circumstances.

Turbo PASCAL is no better than BASIC at handling variable-length parameter lists. It only permits
such lists in calls to some of its built-in functions, like writeln. Therefore, YOU MUST ALWAYS PASS A

FUNCTION NUMBER AND FOUR PARAMETERS, EVEN IF NOT ALL OF THEM ARE USED. Turbo’s strict
type checks will help you with this.

Second, unlike BASIC, Turbo does permit value parameters in function calls. This capability is used
for the function number, which is the only parameter that is never changed by the Driver. Since you
cannot mix “by reference” and “by value” variable passing in different calls, only the function number
can passed by value.

A sample Turbo PASCAL program called DRVTEST.PAS is also supplied. This program permits you to
monitor a table of registers on the AutoMate. To run it, load the Turbo PASCAL Driver, load Turbo
PASCAL with DRVTEST as the current file, and press Alt-R to Run the sample. The program is
menu-driven and should be easy to understand.

The PASDRV Unit

The Turbo 7 version of the Driver takes advantage of Turbo’s “unit” capability. To make the Driver
callable from a particular Pascal program, simply include the statement:

uses PASDRV;

Note that the file PASDRV.TPU, supplied on the Driver distribution disk, must be present in the
current directory for this to work.

Note! Turbo PASCAL units are never compatible between versions. In other words,
the Version 7 unit can only be used with Turbo PASCAL Version 7. Using the
wrong unit with the wrong version will cause errors or a crash.

The PASDRV “unit” contains the constant function numbers previously supplied in the
DRVHDR.PAS include file. For example, the constant B_RDREG is defined in the unit as 3, the

AutoMate Communications Driver - Interfaces

Revision 2.625 October 21, 1996 Page 13

function number for Read Register. The file PASDRV.I is included so that you can see the list of
constants found in the unit file.

AutoMate Communications Driver - Interfaces

Page 14 October 21, 1996 Revision 2.625

C

The C language binding, which supports Microsoft C Version 7 and Borland C++ Version 3, is very
similar to the standard BASIC interface. It is available in both Single-User Linkable and Incorporated
versions. Calls to the driver take the form:

status = basdrv(fno,parm1,...);

where “fno” is an integer function number. basdrv returns an integer value containing an error code,
if any. A return code of zero indicates that the operation was successful.

If you are using a Single-User Linkable version of the Driver, the software will randomly check for the
presence of the Hardware Key on the parallel port. If the key is not detected, the Driver will return a
STATUS of -2.

The function basdrv() should be declared as:

extern int _basdrv();

The Driver binding is found in an Object Library file called MSCDRV.LIB. This file contains the actual
basdrv() function, and you must link it with any C program that calls the driver. MSCDRV is designed
for use with the Small memory model. A second file, MSCDRVM, is provided for use with the Medium
memory model. Please call ACS for instructions on interfacing with other memory models.

Note! The standard binding has no provision for operation with the Compact, Large,
or Huge models. Please call us if you need to use these.

The only major difference between the C binding and the standard interface concerns value and
address parameters. BASIC does not permit value parameters, so the manual says that all parameters
must be passed by address.

C permits value parameters, so you may use them as often as possible. As a general rule, any scalar
(int, char, etc.) that is not modified by the function should be passed by value.

Any array parameter (strings, integer arrays, etc.) must be passed by address. This is the normal
convention in C. You must also pass any scalar parameter which will be altered by the Driver by
address, usually by using the ‘&’ (address of) operator.

Since the status word is returned directly by the driver, there is no need to include a “status”
parameter in each call. You may discard the status word returned by basdrv() if it is not needed. Any
nonzero status value indicates an error has occurred.

Further, BASIC and Pascal cannot handle variable-length parameter lists. When using those languages,
you must always pass a fixed number of parameters to the driver, padding the list with dummies as
needed. With C, you need only pass the number of parameters required by the particular function
call.

A header file, MSCDRV.H, is included on the distribution disk to make the driver easier to use with C.
This header file “#defines” all of the function numbers to symbols of the form “B_name”. For

AutoMate Communications Driver - Interfaces

Revision 2.625 October 21, 1996 Page 15

example, symbol B_WHORU is assigned to the function number for the WHORU call. To use this file,
simply put the statement “#include <mscdrv.h>” near the top of your C source file.

Now for some examples:

int idbuf[40],status;
status = basdrv(B_WHORU,idbuf);

This call reads the processor identification data into the integer array idbuf, storing the status word
in the variable “status”.

int sltno;
basdrv(B_SETNOD,2);
basdrv(B_SETDSLT,sltno);

Sets the destination node to 2 and the destination slot to the value in sltno.

int regbuf[40],status;
status = basdrv(B_RDREG,02000,30,regbuf);

Reads the values of 30 registers into the integer array “regbuf” beginning with register 2000. The
status word is saved into the integer variable “status”.

int prstat;
if (basdrv(B_RDSTAT,&prstat)) {

puts(“Could not read processor status.”);
return(1);
}

printf(“Processor is %s\r\n”,(prstat) ? “RUNNING” : “Stopped”);

This fragment tries to read the current processor status into the variable “prstat”. If the operation
fails, it prints an error message; otherwise, it displays the correct message.

Sample files

A sample C file, DRVCLK.C, is included to help you understand how to work with the driver. This
simple program reads and displays an AutoMate processor’s clock registers on the standard output de-
vice. It also shows how to write programs that will work either directly to the AutoMate or via
Gateway.

Incorporated Version

The Incorporated Driver for Microsoft C is supplied as a LIBrary file, MSCDRVI.LIB. You should in-
clude this library name in your Linker command. With the Incorporated Driver, there is no resident
portion to load and no copy protection; the entire Driver is included in the library.

AutoMate Communications Driver - Interfaces

Page 16 October 21, 1996 Revision 2.625

Visual Basic

Microsoft Visual Basic is supported by the Windows AutoMate Driver DLL. Working with the DLL
is similar to using any of the other interfaces, with the following exceptions:

• Very Important. The Driver is available in both 16 and 32-bit versions. The 32-bit version
behaves somewhat differently than the 16-bit version, which is described in this section. Please
refer to the “Windows 95/NT” section on page 22 for more information on the 32-bit Driver.

• To install the DLLs, you must copy them to a directory on your system’s PATH or to the Windows
SYSTEM directory. You will need to explain this procedure to the end-user or use the Microsoft
VB Setup application.

• The Windows AutoMate Driver DLL uses protected-mode instructions and is hence not
compatible with Windows’s Real mode. The DLL will only operate in Windows Standard or 386
Enhanced modes. 386 Enhanced mode provides the fastest and most reliable communications.
Windows 3.1 provides markedly better serial port operation than Windows 3.0, especially at 9600
baud or higher.

• Visual Basic supports the use of Value parameters. It is not necessary to assign numeric values to
variables before calling the Driver.

• The Driver is declared as a Function called basdrv. The Status value is returned by this function.

• Two of the Driver’s functions, SRCONV and SRBCONV, require string parameters. Because
Visual Basic cannot easily pass strings to DLLs, there is a “helper alias” declaration basdrvstr that
is used when calling these two functions (see below).

Header File

ACS has supplied a set of global declarations for use with Visual Basic and the Windows Driver.
These declarations are found in a text file called AMDDLL.VBH. You can install them in your Visual
Basic application by opening AMDDLL.VBH with Notepad (or another text editor), selecting the entire
file, copying it to the clipboard, switching to Visual Basic, and Pasting the clipboard into the VB
application’s Global module.

The declarations look something like this:

Global Const bRDPNT = 1 ‘ Read Value of a Point
Global Const bWRPNT = 2 ‘ Write Value of a Point

and so on...

AMDDLL.VBH also contains the DLL declarations:

‘
‘ Use these declarations while developing the application
‘

AutoMate Communications Driver - Interfaces

Revision 2.625 October 21, 1996 Page 17

Declare Function basdrv Lib “AMDDLL.DLL” (ByVal FuncNo As
Integer, p1 As Any, p2 As Any, p3 As Any, p4 As Any) As
Integer

Declare Function basdrvstr Lib “AMDDLL.DLL” Alias “basdrv”
(ByVal FuncNo As Integer, ByVal p1 As String, p2 As Any, p3
As Any, p4 As Any)

These declarations tell Visual Basic that the Driver functions are located in the file

Calling the DLL

For all Driver commands except SRCONV and SRBCONV, you can call the DLL with standard
Visual Basic function calls like this:

status = basdrv(bRDREG, &O3702, 3, bar(0), 0)

This command reads three registers starting at address 3702 into the array bar. Notice that the array
is passed via its first element bar(0). The operation status will be returned in the variable status.

Note! It is essential that you pass arrays to the DLL by their first element. Passing an
array name or array() will almost certainly cause a General Protection Fault
(UAE under Windows 3.0).

Visual Basic requires the PASCAL calling convention to DLLs, which in essence means that you must
always supply five operands to the basdrv function (the function number and four parameters).
However, as stated above, you can pass numeric values directly and use zero (or any integer variable)
as a placeholder for unused parameters.

If you need to call the SRCONV or SRBCONV commands, use a statement like this:

status = basdrvstr(bSRBCONV, i$, reg, bit, 0)

This command will convert the input string i$ to a register and bit address. The operation status is
returned in the variable status.

Note! DO NOT pass Visual Basic strings to other Driver commands, and DO NOT
call SRCONV or SRBCONV with the standard basdrv call. Either mistake
will cause a GPF or other crash.

Yielding Control

When constructing your Visual Basic application, remember to provide time for other applications to
run. Windows is a cooperative multitasking environment; you must “voluntarily” give up control to
allow other applications to execute. In the worst case, if you fail yield control, you may be unable to
stop your own application.

The classic mistake of this type is to create a tight data-sampling loop like this:

do

AutoMate Communications Driver - Interfaces

Page 18 October 21, 1996 Revision 2.625

status = basdrv(bRDREG, &O2000, 60, bar(0), 0)

for n=0 to 59
print#1, bar(n); “,”;
next n

print#1,

loop while status = 0

Obviously, this loop also provides no escape other than a status error, but the essential point is that
control never returns to Windows until this loop exits. Visual Basic will be unable to process other
events for your application (or any other application).

There are two possible solutions to this problem:

• Insert a n = DoEvents() statement inside the do loop. This will allow other Windows applications
to get control periodically.

• Implement this sampling function with a Visual Basic Timer control. This is the best solution. It
provides very efficient operation and a controlled sampling interval. The sample application
(described below) uses this approach to sample processor information. Remember that a limited
number of Timer controls can be running at any given time, and that you can selectively enable or
disable a Timer using its enabled property.

Sample Application

The Visual Basic version of the DLL is supplied with a sample Visual Basic application that
demonstrates communicating with the AutoMate. The application is provided both as a standalone
EXE and as a Visual Basic “project.”

To run the sample application, invoke AMDDLL.EXE with the Program Manager “File / Run…”
command or by double-clicking in the File Manager. The sample application will immediately try to
go online and report information about the AutoMate processor.

You may also wish to examine the sample application to see how the various Driver DLL calls are
used. You can do this by opening AMDDLL.MAK with the Visual Basic “File / Open Project…”
command.

AutoMate Communications Driver - Interfaces

Revision 2.625 October 21, 1996 Page 19

Windows 3.1

Windows applications other than Visual Basic can call the AutoMate Driver DLL, with the following
restrictions:

• To install the DLLs, you must copy them to a directory on your system’s PATH or to the Windows
SYSTEM directory. You will need to explain this procedure to the end-user or provide a suitable
“install” application.

• The Windows AutoMate Driver DLL uses protected-mode instructions and is hence not
compatible with Windows’s Real mode. The DLL will only operate in Windows Standard or 386
Enhanced modes. 386 Enhanced mode provides the fastest and most reliable communications.
Windows 3.1 prvides markedly better serial port operation than Windows 3.0, especially at 9600
baud or higher.

Caution. Programming under Windows is highly demanding. Developing a Windows application is
greatly more complex and unforgiving than programming under DOS. If you are not already familiar
with programming under Windows, or if the information in this section seems far beyond your current
knowledge, we strongly recommend that you consider beginning with a Windows “application
generator” like Visual Basic or Delphi. Customer feedback has taught us that a simple application
may take five times or more longer for a beginning C programmer to develop under Windows than it
would under DOS.

The Driver DLL provides two caller interfaces, one that uses the __pascal calling convention, and
one that uses the __cdecl convention. It is beyond the scope of this manual to describe these
conventions in detail.

The __pascal entry is used by Visual Basic, and could be used by other applications that do not
support variable-length parameter lists. Since few Driver functions use all four optional parameters,
and since many Driver parameters can be efficiently passed by value, it is generally not desirable to use
the __pascal entry point. This calling convention requires a fixed number and type of parameters;
to permit differing parameter types, all parameters (except the function number) must be passed by
reference.

The C declaration for this entry point is:

extern int __far __pascal basdrv(int fno, void __far *p1, void
__far *p2, void __far *p3, void __far *p4);

Most C and C++ applications should probably use the __cdecl calling convention. This convention
is most efficient for routines (like the Driver) that make use of variable-length parameter lists.
Principally in order to provide simple compatibility for Visual Basic users, the __cdecl entry to the
Driver is named am_cdrv.

The C/C++ declaration for the DLL is:

#ifdef __cplusplus /* C++ definitions */
extern “C” int __far __cdecl am_cdrv(int fno, ...); /* Declare

BASDRV */

AutoMate Communications Driver - Interfaces

Page 20 October 21, 1996 Revision 2.625

extern “C” void __far __pascal basdrvoff(void); /* BASDRV
Shutdown */

#else /* C definitions */
extern int __far __cdecl am_cdrv(int fno, ...); /* Declare

BASDRV */
extern void __far __pascal basdrvoff(void); /* BASDRV Shutdown

*/
#endif

#define basdrv am_cdrv
#define BASDRV basdrv

This declaration sequence is found in the MSCDRV.H file included with the Driver. The #define
statements allow you to use calls to basdrv within your application. As long as these declarations
and defines are included in your program, calls to the Driver look just like calls to the DOS C-
language driver described above.

Note. The Driver DLL has its own address space, as do most DLLs and DLL-located
Windows API functions. It is therefore imperative that all pointers be sent to
the Driver as __far. Sending __near pointers to the Driver will cause a
General Protection Fault.

For example, a typical Driver call from a Small-model C program might look something like this:

int status, rval[30];
…
status = basdrv(B_RDREG, 017502, 3, (int __far *) rval);
…

The code fragment reads three registers into the array rval starting at register address 17502. The
(int __far *) cast ensures that the location of the return-value array rval will be sent as a
__far pointer.

C language support

Two support files specifically intended for use with the C language are supplied with the Windows
Driver DLL. The first is the C header file MSCDRV.H. This contains the declarations for the DLL call
along with #defines of all of the Driver function numbers. The declarations in the header file are
suitable for use with Windows-compatible C and C++ compilers such as Microsoft C/C++ version 7
and Borland C/C++ Version 3.1.

The Driver DLL package also includes a DLL import library, AMDDLL.LIB. When included on the
“Libraries” list sent to your compiler’s linker, this library file will provide the necessary “glue” to load
and unload the DLL at runtime and prevent “symbol not found” errors during linking.

Other languages may be able to use the import library. If not, you must make the required API calls to
load and unload the Driver DLL at runtime.

AutoMate Communications Driver - Interfaces

Revision 2.625 October 21, 1996 Page 21

Note. The Driver DLL does not currently provide support for multiple callers to the
DLL. It is intended for use by one calling application at a time.

Note. Currently, the Driver does not support __huge pointers. When calling the
Driver from a Huge-model program, you will need to be sure that buffers do
not cross segment boundaries.

AutoMate Communications Driver - Interfaces

Page 22 October 21, 1996 Revision 2.625

Windows 95/NT

The AutoMate Driver is available in a 32-bit DLL for use under Windows 95 and Windows NT.
Usage is very similar to the Windows 3.1 version, with the following exceptions:

• The basdrv function is exported from the DLL as _stdcall. This should make it accessible
from any Visual Basic-like language. The _cdecl export am_cdrv is still available.

• The 32-bit version of the Driver is called ACD32.DLL. An import library (ACD32.LIB) is provided
for users of C-like languages. The 32-bit Driver “include” file for use with C compilers is called
ACD32.H.

• Windows 95 Note: By default, the Windows 95 Explorer is configured not to display “system”
files. This means that you won’t be able to “see” the Driver file ACD32.DLL in the Explorer. To
make the Driver visible, go into Explorer’s View menu and choose “Options….” When the
Explorer Options dialog box appears, click the “Show all files” radio button in the “Hidden Files”
box, then click OK.

• VITAL NOTE! All “integers” used by the Driver are 16 bits long. The AutoMate is a 16-bit
device. Visual Basic programs shouldn’t have any problem with this, but C programmers must
declare integers intended for the driver as short or __int16. Using ints will not work and
may cause the Driver to crash.

The C declarations for the 32-bit Driver:

extern short _stdcall basdrv(
short fno, // Function number
void far *p1, // Parameter 1
void far *p2, // Parameter 2
void far *p3, // Parameter 3
void far *p4) // Parameter 4

extern short am_cdrv(
short fno, // Function number
...) // Parameter list

The Visual Basic declarations for the 32-bit Driver:

Declare Function basdrv Lib "ACD32.dll" _
(ByVal FuncNo As Integer, ByRef p1 As Any, _
 ByRef p2 As Any, ByRef p3 As Any, _
 ByRef p4 As Any) As Integer

Declare Function basdrvstr Lib "ACD32.dll" Alias "basdrv" _
(ByVal FuncNo As Integer, _
 ByVal p1 As String, ByRef p2 As Any, _
 ByRef p3 As Any, ByRef p4 As Any) As Integer

As with the 16-bit Driver, the basdrvstr alias can be used with to call functions that require a string
parameter.

AutoMate Communications Driver - Interfaces

Revision 2.625 October 21, 1996 Page 23

Using the Driver over RNET

Most of the questions we receive about the Driver concern using it with the Reliance RNET local area
network. It is simple enough to adapt your programs to work over RNET as long as you follow a few
simple guidelines.

There are several RNET terms you should be familiar with. First, the “node number”. Every device
on the network, including the PC, has a node number. This number is exactly like a telephone number;
it serves as a destination selector that routes your commands over the network to the appropriate
destination.

Each device on the network must be assigned a different node number between 0 and 254. You
should assign the node numbers in order, starting with 0. Consult your hardware manuals to
determine how to set the node numbers on your equipment.

Generally, if you have only one PC on your network, it should be assigned node 0 as recommended by
Reliance. The PC’s node number is always the same as the Gateway (45C27) that it is connected to.

You must use the SETGWAY command (number 28) to set the Gateway’s node number. When the
Gateway is first powered up, it is “uninitialized” and will return Error 104 until you execute the
SETGWAY command. SETGWAY should be the first command that you execute when
communicating over RNET.

If you set the Gateway node to something other than 0, you must set the Origin node number to the
same number. Use the SETOND command (number 52) to do this.

Once the Gateway has been initialized, you must select the destination for your commands. For the
A15 and A20, only the node number is needed; use the SETNOD (number 40) to select the target
processor. For A30 and A40 processors, you set both the target node (using SETNOD) and the
destination slot (using SETDSLT, command number 41). For the A40, the destination slot is always
the Control card, not the Logic card.

Your program may refer to as many different destinations as required. Calls will be directed to the last
destination specified until you use the SETNOD and SETDSLT commands to change target
processors.

RNET or Direct

It is possible to construct your program so that it will work both over RNET and through an
AutoMate’s front port. There are four issues to address in such programs.

1) Mode detection: is the PC connected to the Gateway or directly to the AutoMate?

2) Initializing the Gateway (if required).

3) Selecting the destination node and slot if operating over RNET.

4) Setting the destination node if the processor is directly connected.

AutoMate Communications Driver - Interfaces

Page 24 October 21, 1996 Revision 2.625

The simplest way to handle all of these problems is to follow this procedure:

1) Set the destination node to 255 using the SETNOD command. Any device will answer a
WHORU command to node 255.

2) Issue a WHORU command (number 29).

3) If BASDRV returns an Error 104 in the Status word, you are connected to an uninitialized
Gateway. You must now execute the SETGWAY command before continuing. After
doing so, go back to step 2. If you set the Gateway’s node number to anything other than
0, you must use the SETOND command to set the PC’s node to the same number.

4) Examine the first element (element 0) of the WHORU return array. This is the device’s
model number. The Gateway answers as Model 12.

5) If you are connected to a Model 12 device, you must select the destination node and slot
and set them with the SETNOD and SETDSLT commands.

6) If you are not connected to a Model 12 device, you must set the destination node to the
processor’s Node Number, which is found in Element 5 of the WHORU return array.
Failure to do this will cause the Driver to return a Timeout Error (-1) for any call other
than WHORU.

If you follow the steps listed above, it should be relatively simple to write programs that work both in
Direct mode and over RNET.

AutoMate Communications Driver - Interfaces

Revision 2.625 October 21, 1996 Page 25

BASDRV and the Serial Comm. Card

Establishing a link with a Serial Communications Card can be a tricky business. Sadly, the card will
not identify itself (via the WHORU command) until you already “know who it is.” This causes a great
deal of confusion among our customers.

To communicate with an AutoMatetm processor via a Serial Communications Card, you must:

1) Make sure that you are connected to a port that is in Host Computer Mode at 9600 baud.
This is the default setup for Port 0 only on the Serial Communications Card. If you need
to use one of the other ports, you must set it up first using the instructions in the card’s
manual. This involves putting a function block in your AutoMatetm application program
that performs the setup.

2) Use the SETNOD (Set Destination Node) command to set the destination node to the slot
number that the Serial Communications Card is in. This makes no sense, but it is correct.

3) Use the SETDSLT (Set Destination Slot) command to select the processor card that you
want to talk to.

Once you have completed these steps, you should be able to communicate with the processor.
Remember that Reliance counts slots in octal, but the Driver expects values in decimal. This makes
for plenty of confusion on both the SETNOD and SETDSLT commands; you may have to try values
“on either side” of the number you believe to be correct before the link will work.

Here is a sample program that links with a Serial Communications Card in Slot 3. The target
processor is in Slot 1:

CALL BASDRV(B_SETNOD, STATUS, 3, B, B, B) ‘ Set node to slot
CALL BASDRV(B_SETDSLT, STATUS, 1, B, B, B) ‘ Set target slot
CALL BASDRV(B_WHORU, STATUS, BAR(0), B, B, B) ‘ Read info

AutoMate Communications Driver - Interfaces

Page 26 October 21, 1996 Revision 2.625

Error Codes

Whenever the STATUS variable is nonzero, and error has occurred. Here is a list of the codes which
you may see returned in the STATUS variable:

Error Code Meaning

-10 Serial port could not be set up

-1 Timeout (destination did not respond)

0 No error

1 Invalid function number

2 Invalid parameter

3 Address out of range

4 Illegal number of bytes requested

6 AutoMate running

7 EEPROM error (application memory)

8 Sequence not found

9 Memory protect violation

10 No memory available

11 Configuration error

12 Data register range error

61 General AutoMate hardware error*

101 Checksum error

102 Destination receive buffer full

103 Illegal command format

104 Gateway not configured

106 Slot number required

WARNING! If you have set up your serial communications card with the PC-DOS
“MODE” command (for use with a serial printer, modem, etc.), the
driver will not operate correctly.

* This error number may occur for many different reasons. Whenever you see Error 61, it means
that the AutoMate has stopped and is in a special “error” mode. In this mode, only certain
BASDRV commands are permitted; all others will return Error 61. Generally, once an Error 61 has
been returned, you should only look at the system error status registers to gather information
about the error. Before trying to restart the AutoMate, you should use a programming device to
clear and reload its memory.

AutoMate Communications Driver - Function Quick Reference

Function Quick Reference by Function Number

Function Name Function
Number

Parameter
1

Parameter
2

Parameter
3

Parameter
4

Description

RDPNT 1 REG BIT DAT Read Value of a Point

WRPNT 2 REG BIT DAT Write Value of a Point

RDREG 3 STRTREG REGCOU INTAR Read Value of Register(s)

WRREG 4 STRTREG REGCOU INTAR Write Value of Register(s)

RDFRCT 7 RAR BAR FRCV NOFRCED Read Input Forcer Table into Register & Bit
Arrays

WRFRCT 8 RAR BAR FRCV NOFRCED Write Input Forcer Table from R & B Arrays

RDSTAT 9 INTST Read Processor Status

WRSTAT 10 INTST Write Processor Status

RDREGLST* 11 RAR COUNT INTAR Read List of Registers RAR into INTAR

WMULPT 12 COUNT REGAR MASKAR DATAR Write Multiple Points

RDREGLIM** 13 REG Read Register Limit

WRREGLIM** 14 REG Write Register Limit

ROFRCT** 15 RAR BAR FRCV NOFRCED Read Output Forcer Table into R & B Arrays

FRCCOIL** 16 REG BIT DAT Force Coil to DAT

UNFRCCOIL** 17 REG BIT Unforce Coil

AutoMate Communications Driver - Function Quick Reference

INSSEQ 18 NOWRDS INTAR Insert Sequence at Program Pointer

DELSEQ 19 Delete Sequence at Program Pointer

SRCHSEQ 20 REG BIT NOWRDS INTAR Find Sequence

SRCHN 21 REG BIT NOWRDS INTAR Find Next Occurrence of Sequence

SRCHU 22 NOWRDS INTAR Get Previous Sequence

SRCHD 23 NOWRDS INTAR Get next sequence

SRCHTOP 24 NOWRDS INTAR Get First Sequence

CHKSEQ 25 REG BIT NOWRDS INTAR Check For a Sequence

CHKN 26 REG BIT NOWRDS INTAR Check for next occurrence of Sequence

SETRNET 27 NODES Set Number of Nodes on RNET

SETGWAY 28 NODENO NODES CONFIG Set Gateway Parameters

WHORU 29 INTAR Read Identifying Information

SETCOMM 30 NODENO NODES Set Communication Parameters

CLRMEM 31 Clear Application Memory

MEMUSE 32 LONGAR Read Memory Use Statistics

RDIOCFG** 33 INTAR Read I/O Configuration Table

WRIOCFG** 34 INTAR Write I/O Configuration Table

REQACC* 35 Request Protected Access

AutoMate Communications Driver - Function Quick Reference

CANACC* 36 Cancel Protected Access

MEMDIAG 37 INTAR Run Memory Diagnostic

IODIAG 38 INTAR Run I/O Diagnostic

GWAYDIAG 39 NOWRDS INTAR OUTAR Run Gateway Diagnostic

SETNOD 40 NODE Set Destination Node

SETDSLT 41 SLOT Set Destination Slot

SETSSLT 42 SLOT Set Origin Slot Number

SETBAUD 43 RATE Set Baud Rate

SETSNG 44 FLAG Set Single-Processor Mode

CLROFRC** 45 Clear Output Forcer Table

AUTOCOM 46 INTAR Establish Communications

SRBCONV 47 STR REG BIT Convert string to register and bit

SRCONV 48 STR REG Convert string to register

SETDLA 49 COUNT Set Communications Delay

WORDAR 50 DAT INTAR Unpack Integer to Array

ARWORD 51 INTAR DAT Pack Array into Word

SETOND 52 NODE Set origin (PC) node

SETMSK 53 MASK Set Interrupt Mask

AutoMate Communications Driver - Function Quick Reference

STPORT 54 PORTN Select Comm. Port

RDCHEK* 55 APPC K20C IOC Read AutoMate Checksums

STEXT 56 ITEXT Send an ASCII string to the serial port

FMO2MS 57 COUNT MOTFLAR MSFLAR Convert Motorola floating point to Microsoft

FMS2MO 58 COUNT MSFLAR MOTFLAR Convert Microsoft floating point to Motorola

FRMPRO= 59 FLAG Set Multitasking Frame

OFF 60 Deactivate Driver

PSYST= 61 BASEADR XMODE RMODE CHAINF Serial Port System Setup

KEYPORT 63 PORTN Select Hardware Key port (LPT1 to LPT3)

PCLINK 64 BASEADR NODENO NODES Set up Reliance R-Net PC Link Card

Legend:

* Not valid for A15

** Not valid for A15 or A20

= Not valid for Windows DLLs

AutoMate Communications Driver - Function QRF

Variable Names used in Quick Reference Table

Identifier Type Description

APPC Integer Application Program Checksum

BAR Integer Array Array of Bit Numbers

BIT Integer Bit Number

CONFIG Integer Gateway CONFIG byte (See Gateway
Manual)

COUNT Integer Count

DAT Integer Bit Value

DATAR Integer Array Array of Bit Values

FLAG Integer Mode Selector (1 or 0)

FRCV Integer Array Array of point force values

INTAR Integer Array Array of data words or bytes

INTST Integer Processor status word

IOC Integer I/O Configuration Checksum

ITEXT String ASCII string to send to serial port

K20C Integer 20000 register checksum

LONGAR Long Integer Array Array of Longwords (values may exceed
32767)

MASK Integer Interrupt mask word

MASKAR Integer Array Array of bit masks

MOTFLAR Floating Point Array Array of Motorola floating point values

MSFLAR Floating Point Array Array of Microsoft floating point values

NODE Integer Node Number (0 to 254)

NODENO Integer Node Number (0 to 254)

NODES Integer Number of nodes (1 to 254)

AutoMate Communications Driver - Function QRF

NOFRCED Integer Number of entries in forcer table

NOWRDS Integer Number of words to transmit

OUTAR Integer Array Gateway Diagnostic return array

PORTN Integer Communications port number (1 or 2)

RAR Integer Array Register number array

RATE Integer Baud Rate code (0 to 7)

REG Integer Register Number

REGAR Integer Array Array of register numbers

REGCOU Integer Number of registers to move

SLOT Integer Slot Number (0 to 20)

STR String String to decode

STRTREG Integer Starting register number

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 33

Function Summary

The rest of this manual consists of language interface descriptions and synopses of BASDRV’s func-
tions. The variable B is used as a dummy placeholder to ensure that six parameters are always passed
to BASDRV from BASIC, which has no variable-length argument list provisions.

This section contains a “synopsis” of each function supported by the AutoMate driver. Note also that
the function synopses are written for the Interpreted BASIC / Microsoft QuickBASIC version of the
Driver. The other language interfaces use exactly the same function numbers and parameters; the only
difference between language interfaces is the “form” of the function calls.

The AutoMate driver uses a total of four different variable types: Integer, Integer Array, Unsigned
Integer, Long Integer Array, and String. Integers are always 16-bit words. Strings are arrays of bytes
less than 255 characters long. You will simply use the Integer, Unsigned Integer, and String types
built into your language; the language interface will take care of any necessary translation.

Remember! If a synopsis lists less than 4 ARGuments (in addition to the STATUS and FUNCTION
NUMBER parameters) you may still have to pass all four if you are using a language like BASIC or
Turbo PASCAL that does not permit variable-length parameter lists. For these languages, you must
“pad” the argument list out to four ARGuments with “dummy” variables (“B” in the synopses). Please
consult the Language Interfaces section for more information on this topic.

Since these synopses are written for the “lowest common denominator,” Interpreted BASIC, they
always include the full 6-parameter list and always assign values to variables, then pass the variables.
Some languages, such as C and QuickBASIC, do not require all of these steps. Check the binding
description for your language to see exactly what you must do to make a call to the Driver.

AutoMate Communications Driver - Functions

Page 34 October 21, 1996 Revision 2.625

RDPNT --- Read Value of a Point

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 1 Function Number Integer
STATUS Return Code Integer
ARG1 Register Integer
ARG2 Bit Integer
ARG3 Value of point Integer
ARG4

DESCRIPTION

Returns the value of the point described by ARG1 and ARG2 in ARG3.

EXAMPLE

REG = &O2000
BIT = &O14
DAT = 0
CALL BASDRV(B.RDPNT, STATUS, REG, BIT, DAT, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"State of point 2000.14 is"DAT

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 35

WRPNT --- Write Value to a Point

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 2 Function Number Integer
STATUS Return Code Integer
ARG1 Register Number Integer
ARG2 Bit Number Integer
ARG3 New value for point Integer
ARG4

DESCRIPTION

Sets point described by ARG1 and ARG2 to the value in ARG3.

EXAMPLE

REG = &O2000
BIT = &O14
DAT = 1
CALL BASDRV(B.WRPNT, STATUS, REG, BIT, DAT, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Point 2000.14 set to 1"

AutoMate Communications Driver - Functions

Page 36 October 21, 1996 Revision 2.625

RDREG --- Read Register Values

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 3 Function Number Integer
STATUS Return Code Integer
ARG1 First register to read Integer
ARG2 No. of regs. to read Integer
ARG3 Dest. for value(s) Integer array
ARG4

DESCRIPTION

Reads ARG2 consecutive registers beginning with the register number contained in ARG1.
The register values are stored in consecutive elements of the integer array ARG3. If only one
register is being read, ARG3 can be an ordinary integer.

COMMENTS

ARG2 must be less than 122.

EXAMPLE

REG = &O2000
COU = 10
DIM RAR(10)
CALL BASDRV(B.RDREG, STATUS, REG, COU, RAR(0), B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Registers 2000-2011:"
FOR LA=0 TO 9:PRINT OCT$(&O2000+LA),RAR(LA)):NEXT

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 37

WRREG --- Write Values to Registers

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 4 Function Number Integer
STATUS Return Code Integer
ARG1 First reg. to write Integer
ARG2 No. of regs. to write Integer
ARG3 Array of values Integer Array
ARG4

DESCRIPTION

Writes values from consecutive elements of integer array ARG3 to ARG2 consecutive
registers beginning with register ARG1.

COMMENTS

Writes to up to 122 registers.

EXAMPLE

REG = &O2000
COU = 10
DIM RAR(10)
FOR LA=0 TO 9:RAR(LA)=56:NEXT
CALL BASDRV(B.WRREG, STATUS, REG, COU, RAR(0), B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Registers 2000-2011 set to 56"

AutoMate Communications Driver - Functions

Page 38 October 21, 1996 Revision 2.625

RDFRCT --- Read Input Forcer Table

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 7 Function Number Integer
STATUS Return Code Integer
ARG1 Register array Integer array
ARG2 Bit array Integer array
ARG3 Force values Integer array
ARG4 No. of points forced Integer

DESCRIPTION

Reads the contents of the processor’s input force table. After the read, arrays ARG1 and
ARG2 describe the points that are forced. Array ARG3 contains the force values, and ARG4
indicates how many points are forced.

COMMENTS

ARG4 can vary from 0 to 20.

EXAMPLE

DIM RAR(20),BAR(20),FRCV(20)
COU = 1
CALL BASDRV(B.RDFRCT, STATUS, RAR(0), BAR(0), FRCV(0), COU)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
COU = COU-1
PRINT"Input Forcer Table"
FOR LA=0 TO COU

PRINT OCT$(RAR(LA))"."OCT$(BAR(LA))" Forced To"FRCV(LA)
NEXT LA

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 39

WRFRCT --- Write Input Forcer Table

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 8 Function Number Integer
STATUS Return Code Integer
ARG1 Registers Integer array
ARG2 Bits Integer array
ARG3 Force values Integer array
ARG4 No. of points to force Integer

DESCRIPTION

Loads the processor’s input forcer table. To use, load the integer arrays ARG1 and ARG2
with the point numbers to force and load integer array ARG3 with the desired force values.
ARG3 should contain only values of zero or one, although any nonzero value will be
interpreted as a one. Set ARG4 to the number of points, and execute the call.

Please refer to page for information and restrictions on forcing.

COMMENTS

Note that this function clears and rewrites the Input Forcer Table on each call. If you wish to
force or unforce individual points, you must read in the table, add or delete the desired point,
and rewrite the table.

ARG4 must be between 0 and 20. A value of zero clears the table.

EXAMPLE

REG = &O14
BIT = &O12
COU = 1
DAT = 1
CALL BASDRV(B.WRFRCT, STATUS, REG, BIT, DAT, COU)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Input 14.12 is now the only input forced. It"
PRINT"is forced to 1."

Note: You can use integers in place of integer arrays if only one point is being forced
or if you wish to clear the forcer table by passing COU=0.

AutoMate Communications Driver - Functions

Page 40 October 21, 1996 Revision 2.625

RDSTAT --- Read Processor Status

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 9 Function Number Integer
STATUS Return Code Integer
ARG1 Processor Status Integer
ARG2
ARG3
ARG4

DESCRIPTION

Reads the current status of the AutoMate processor into ARG1. Two values are possible: 1
indicates Processor Running, 0 means Processor Halted.

EXAMPLE

DAT = 0
CALL BASDRV(B.RDSTAT, STATUS, DAT, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
IF DAT=1 THEN PRINT"Processor Running" ELSE PRINT"Processor

Halted"

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 41

WRSTAT --- Write Processor Status

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 10 Function Number Integer
STATUS Return Code Integer
ARG1 New status Integer
ARG2
ARG3
ARG4

DESCRIPTION

Sets the processor status. ARG1 can be set to:

0 Stop Processor
1 Run Processor
2 Single Scan

before the call.

COMMENTS

Note! This command changes the processor status immediately, without any further
confirmation. Be sure that you actually wish to alter the status before executing
this command!

The processor will execute one scan for each time that you call WRSTAT with ARG1 = 2.

EXAMPLE

PRINT"*** Run Processor ***"
PRINT"Are you sure ?"
IF INPUT$(1)="Y" THEN

NEWSTA = 1:
CALL BASDRV(B.WRSTAT, STATUS, NEWSTA, B, B, B):
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

AutoMate Communications Driver - Functions

Page 42 October 21, 1996 Revision 2.625

RDREGLST --- Read List of Registers

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 11 Function Number Integer
STATUS Return Code Integer
ARG1 Registers to read Integer array
ARG2 No. of regs. to read Integer
ARG3 Register values Integer array
ARG4

DESCRIPTION

This function allows you to read multiple nonconsecutive registers. To use it, place the
numbers of the registers in consecutive elements of the integer array ARG1 and the count in
ARG2. After the call, the array ARG3 will contain the values.

COMMENTS

Not allowed on A15. You may specify up to 122 register numbers to read.

EXAMPLE

RESTORE
COU = 0
DIM RAR(122),VAR(122)
READ RAR(0)
WHILE RAR(COU)>0

COU = COU+1
READ RAR(COU)
WEND

CALL BASDRV(B.RDREGLST, STATUS, RAR(0), COU, VAR(0), B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Register","Value"
COU=COU-1
FOR LA=0 TO COU

PRINT OCT$(RAR(LA)),VAR(LA)
NEXT LA

DATA &O10,&O40,&O2000,&O20000,-1

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 43

WMULPT --- Write Multiple Points

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 12 Function Number Integer
STATUS Return Code Integer
ARG1 Count Integer
ARG2 Register List Integer array
ARG3 Mask List Integer array
ARG4 Data Integer array

DESCRIPTION

This function provides a method to modify multiple points without repeated calls to WRPNT.
It uses binary masks to determine which points in a given register will be affected. For
example, suppose that:

ARG2(0) = &O2000 [Selects Register 2000]
Reg 2000 (Before) = &HACAC
ARG3(0) = &HFF [Only lower byte will be affected]
ARG4(0) = &H6565 [Mask]

The results will be:

Reg. 2000 = 1010 1010 1010 1010
Mask = 0000 0000 1111 1111
Data = 0101 0101 0101 0101

Result = 1010 1010 0101 0101

The new result, &HAC65, will be assigned to register 2000.

COMMENTS

Up to 40 registers can be written in one call.

EXAMPLE

To execute the above example assuming Register 2000 already contains &HACAC:

REG = &O2000
MASK = &HFF
DAT = &H6565
COU = 1

AutoMate Communications Driver - Functions

Page 44 October 21, 1996 Revision 2.625

CALL BASDRV(B.WMULPNT, STATUS, COU, REG, MASK, DAT)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

Note: We have once again used integers in place of integer arrays as only one register
is being modified.

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 45

RDREGLIM --- Read Register Limit

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 13 Function Number Integer
STATUS Return Code Integer
ARG1 Current Register Limit Integer
ARG2
ARG3
ARG4

DESCRIPTION

A20E, A30 and A40 only. Reads the current data register limit and returns it in ARG1. The
data register limit is always 20000 Octal or higher.

EXAMPLE

REG = 0
CALL BASDRV(B.RDREGLIM, STATUS, REG, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Current Register Limit is "OCT$(REG)

AutoMate Communications Driver - Functions

Page 46 October 21, 1996 Revision 2.625

WRREGLIM --- Write Register Limit

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 14 Function Number Integer
STATUS Return Code Integer
ARG1 New Register Limit Integer
ARG2
ARG3
ARG4

DESCRIPTION

A20E, A30 and A40 only. Tries to set the new user data area register limit to ARG1. Will
fail if the AutoMate processor does not have enough free memory to create the new number of
20000 data registers.

You can use the MEMUSE command to determine if there is enough free memory to create
new registers.

EXAMPLE

REG = &O20100
CALL BASDRV(B.WRREGLIM, STATUS, REG, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"New register limit set"

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 47

ROFRCT --- Read Output Forcer Table

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 15 Function Number Integer
STATUS Return Code Integer
ARG1 Registers Integer array
ARG2 Bits Integer array
ARG3 Force Values Integer array
ARG4 No. of points forced Integer

DESCRIPTION

A30 or A40 only. Reads the current contents of the processor’s Output Forcer Table into
arrays ARG1, ARG2, and ARG3. After the call, ARG4 will contain the number of points in
the table.

Forcing is a complicated operation. This command may or may not show all outputs that are
forced. The details of the output forcing procedure are beyond the scope of this manual.

COMMENTS

The table can contain up to 20 points.

EXAMPLE

COU = 0
DIM RAR(20),BAR(20),FRCV(20)
CALL BASDRV(B.ROFRCT, STATUS, RAR(0), BAR(0), FRCV(0), COU)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
COU = COU-1
PRINT"Output Forcer Table:"
FOR LA=0 TO COU

PRINT OCT$(RAR(LA))"."OCT$(BAR(LA))" Forced To"FRCV(LA)
NEXT LA

AutoMate Communications Driver - Functions

Page 48 October 21, 1996 Revision 2.625

FRCCOIL --- Force Output

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 16 Function Number Integer
STATUS Return Code Integer
ARG1 Register number Integer
ARG2 Bit number Integer
ARG3 Force value Integer
ARG4

DESCRIPTION

A30 or A40 only. Forces the output point described by ARG1 and ARG2 to the value in
ARG3.

Forcing is a complicated operation. This command will only properly force digital outputs that
do not have coils in the ladder program. Forcing outputs that do have coils in the application
program requires modifying the ladder rung in question and is beyond the scope of this manual.

EXAMPLE

REG = &O10
BIT = &016
DAT = 1
CALL BASDRV(B.FRCCOIL, STATUS, REG, BIT, DAT, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Output 10.16 Forced On"

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 49

UNFRCCOIL --- Unforce Output

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 17 Function Number Integer
STATUS Return Code Integer
ARG1 Register Integer
ARG2 Bit Integer
ARG3
ARG4

DESCRIPTION

A30 or A40 only. Unforces the output point described by ARG1 and ARG2. See page 48 for
comments on forcing.

EXAMPLE

REG = &O10
BIT = &O16
CALL BASDRV(B.UNFRCCOIL, STATUS, REG, BIT, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Coil 10.16 is no longer forced"

AutoMate Communications Driver - Functions

Page 50 October 21, 1996 Revision 2.625

INSSEQ --- Insert Sequence

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 18 Function Number Integer
STATUS Return Code Integer
ARG1 Number of words Integer
ARG2 Sequence Integer array
ARG3
ARG4

DESCRIPTION

Inserts the ladder sequence (of length ARG1) described by the words in the integer array
ARG2 at the current position of the program pointer. If there are already sequences at this
location, they will be moved down to make room.

COMMENTS

The ladder sequence must be in internal form for the insertion to be successful. Advanced
knowledge beyond the scope of this manual is required to encode and decode ladders in the re-
quired format. Use this command (and all others that modify the program memory) with great
caution.

EXAMPLE

Assuming that a correctly encoded ladder of length 6 words is found in the integer array
LADAR (which was dimensioned to size 50):

NOWRDS = 6
CALL BASDRV(B.INSSEQ, STATUS, NOWRDS, LADAR(0), B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"New Ladder Inserted"

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 51

DELSEQ --- Delete Sequence

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 19 Function Number Integer
STATUS Return Code Integer
ARG1
ARG2
ARG3
ARG4

DESCRIPTION

Delete ladder sequence at the program pointer.

COMMENTS

There is no way to recover the sequence deleted by this command. Use this command with
great caution.

EXAMPLE

CALL BASDRV(B.DELSEQ, STATUS, B, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Sequence deleted."

AutoMate Communications Driver - Functions

Page 52 October 21, 1996 Revision 2.625

SRCHSEQ --- Find Sequence

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)

FNO = 20 Function Number Integer
STATUS Return Code Integer
ARG1 Register number Integer
ARG2 Bit number Integer
ARG3 No. of words Integer
ARG4 Storage for ladder Integer array

DESCRIPTION

Searches the application memory for the sequence described by ARG1 and ARG2 beginning
with the first sequence in the program. If the sequence exists, BASDRV will return it in the
integer array ARG4. The sequence’s length will be returned in ARG3. The processor’s
current position pointer is moved to point to the sequence.

COMMENTS

The integer array ARG4 must be dimensioned (122) or more to accommodate the largest
possible ladder sequence.

If the sequence is not found, STATUS will be equal to 8. If the sequence does exist, it will be
returned in the array ARG4 in internal format, one word in each consecutive element.
Decoding ladder sequences is beyond the scope of this manual. For more information, contact
Reliance Electric directly.

EXAMPLE

REG = &O2000 : BIT = &O13 : NOWRDS = 0
DIM INTAR(122)
CALL BASDRV(B.SRCHSEQ, STATUS, REG, BIT, NOWRDS, INTAR(0))
IF STATUS=8 THEN PRINT"Sequence 2000.13 not found."
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Sequence 2000.13 found. Contents:"
NOWRDS = NOWRDS-1
FOR LA=0 TO NOWRDS

PRINT " "RIGHT$("000"+HEX$(INTAR(LA)),4);
NEXT LA

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 53

SRCHN --- Find Next Occurrence of Sequence

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 21 Function Number Integer
STATUS Return Code Integer
ARG1 Register Integer
ARG2 Bit Integer
ARG3 No. of words Integer
ARG4 Storage for Sequence Integer array

DESCRIPTION

Searches for the sequence described by ARG1 and ARG2 beginning at the current program
pointer instead of the first sequence in memory. If the sequence is found, the processor’s pro-
gram pointer is moved to point to it.

COMMENTS

Same as SRCHSEQ, page 52. Use this function to retrieve coil numbers that occur more than
once, such as LOOP / END pairs.

EXAMPLE

REG = &O2000
BIT = &O13
DIM INTAR(122)
NOWRDS = 0
CALL BASDRV(B.SRCHN, STATUS, REG, BIT, NOWRDS, INTAR(0))
IF STATUS=8 THEN PRINT"Second occurrence not found."
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Second occurrence of sequence 2000.13 found."

AutoMate Communications Driver - Functions

Page 54 October 21, 1996 Revision 2.625

SRCHU --- Get Previous Sequence

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 22 Function Number Integer
STATUS Return Code Integer
ARG1 No. of words Integer
ARG2 Storage for sequence Integer array
ARG3
ARG4

DESCRIPTION

Gets the sequence immediately before the current program pointer position into ARG2. The
program pointer is also moved back to point to the previous sequence.

COMMENTS

Same as SRCHSEQ, page 52. Returns STATUS=8 if the program pointer is at the first
sequence or if the processor’s application memory is empty.

EXAMPLE

NOWRDS = 0
DIM INTAR(122)
CALL BASDRV(B.SRCHU, STATUS, NOWRDS, INTAR(0), B, B)
IF STATUS=8 THEN PRINT"No previous sequence"
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Previous sequence located."

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 55

SRCHD --- Get Next Sequence

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 23 Function Number Integer
STATUS Return Code Integer
ARG1 No. of words Integer
ARG2 Storage for sequence Integer array
ARG3
ARG4

DESCRIPTION

Moves the processor’s program pointer down one sequence and returns that sequence.

COMMENTS

Same as SRCHSEQ, page 52. Returns STATUS=8 if the pointer is at the end of the program
or if the application memory is empty.

EXAMPLE

NOWRDS = 0
DIM INTAR(122)
CALL BASDRV(B.SRCHD, STATUS, NOWRDS, INTAR(0), B, B)
IF STATUS=8 THEN PRINT"End of program."
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Next statement located"

AutoMate Communications Driver - Functions

Page 56 October 21, 1996 Revision 2.625

SRCHTOP --- Get First Sequence

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 24 Function Number Integer
STATUS Return Code Integer
ARG1 No. of words Integer
ARG2 Storage for sequence Integer array
ARG3
ARG4

DESCRIPTION

Moves the processor’s program pointer to the beginning of application memory and returns the
first sequence in the program.

COMMENTS

Same as SRCHSEQ, page 52. Returns STATUS=8 if the application memory is empty.

EXAMPLE

NOWRDS = 0
DIM INTAR(122)
CALL BASDRV(B.SRCHTOP, STATUS, NOWRDS, INTAR(0), B, B)
IF STATUS=8 THEN PRINT"Memory empty."
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"At top of program."

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 57

CHKSEQ --- Check for a Sequence

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 25 Function Number Integer
STATUS Return Code Integer
ARG1 Register number Integer
ARG2 Bit number Integer
ARG3 No. of words Integer
ARG4 Storage for sequence Integer array

DESCRIPTION

This function is the same as SRCHSEQ except the processor’s program pointer is not moved.
The search always begins with the first sequence in memory.

COMMENTS

Same as SRCHSEQ, page 52. Returns STATUS=8 if the sequence does not exist.

EXAMPLE

REG = &O2000
BIT = &013
NOWRDS = 0
DIM INTAR(122)
CALL BASDRV(B.CHKSEQ, STATUS, REG, BIT, NOWRDS, INTAR(0))
IF STATUS=8 THEN PRINT"Sequence not found"
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Sequence exists."

AutoMate Communications Driver - Functions

Page 58 October 21, 1996 Revision 2.625

CHKN --- Check for next Occurrence of Sequence

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 26 Function Number Integer
STATUS Return Code Integer
ARG1 Register number Integer
ARG2 Bit number Integer
ARG3 No. of words Integer
ARG4 Storage for sequence Integer array

DESCRIPTION

This function is the same as SRCHN except the processor’s program pointer is not moved.
The search for the sequence described by ARG1 and ARG2 begins at the current program
pointer position. If an occurrence of the sequence can be found between the program pointer
and the end of the program, it will be returned in ARG4.

COMMENTS

Same as SRCHN, page 53. Returns STATUS=8 if the sequence (or another occurrence of the
sequence) does not exist.

EXAMPLE

REG = &O2000
BIT = &O13
NOWRDS = 0
DIM INTAR(122)
CALL BASDRV(B.CHKN, STATUS, REG, BIT, NOWRDS, INTAR(0))
IF STATUS=8 THEN PRINT"No more occurrences found."
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Another occurrence found."

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 59

SETRNET --- Set Number of Nodes on RNET

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 27 Function Number Integer
STATUS Return Code Integer
ARG1 Number of nodes Integer
ARG2
ARG3
ARG4

DESCRIPTION

Sets the number of nodes on an RNET Local Area Network.

COMMENTS

ARG1 should be set to one more than the highest node number on the network.

EXAMPLE

NODES = 2
CALL BASDRV(B.SETRNET, STATUS, NODES, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Nodes 0 and 1 enabled."

AutoMate Communications Driver - Functions

Page 60 October 21, 1996 Revision 2.625

SETGWAY --- Set Gateway Parameters

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 28 Function Number Integer
STATUS Return Code Integer
ARG1 Node number Integer
ARG2 Number of nodes Integer
ARG3 Config byte Integer
ARG4

DESCRIPTION

Sets up an RNET Gateway unit. ARG1 determines the node number of the Gateway itself,
and ARG2 sets the highest node number on the network.

ARG3 sets the Gateway’s Config byte. This byte can be used to lengthen the Gateway’s
timeout delay if you frequently experience "Timeout Errors" over RNET. For information on
this byte, you should consult your Gateway manual or contact Reliance.

COMMENTS

ARG2 should be set to the highest node number on the network plus one.

If you receive an error 104 (Gateway not configured) when trying to communicate with a
processor via a Gateway, you should issue this command.

EXAMPLE

NODENO = 0
NODES = 2:REM Highest Node + 1 is 2
CONFIG = 0:REM No delay extension
CALL BASDRV(B.SETGWAY, STATUS, NODENO, NODES, CONFIG, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Gateway set up as node 0. Node 1 enabled."

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 61

WHORU --- Read Identifying Information

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 29 Function Number Integer
STATUS Return Code Integer
ARG1 Storage for data Integer array
ARG2
ARG3
ARG4

DESCRIPTION

This command allows you to identify the processor type that the computer is connected to, its
node number, as various other parameters. These parameters are returned in the first 14
elements of the integer array ARG1 with one parameter in each element.

COMMENTS

After a successful return, the array ARG1 will contain the following 14 parameters:

Element Description

0 Model Number:

9 = AutoMax

12 = Gateway

15 = AutoMate 15

18 = AutoMate 15E

20 = AutoMate 20

21 = AutoMate 20E

29 = AutoMate 30

30 = AutoMate 30E

38 = AutoMate 40X

39 = AutoMate 40

40 = AutoMate 40E

1 Memory Protect Status:

bit 2 = 0: Privileged Access

AutoMate Communications Driver - Functions

Page 62 October 21, 1996 Revision 2.625

bit 2 = 1: No Access

2 Processor Software Version (X.x)

3 Processor Software Revision (x.X)

4 Processor Software Release

5 Processor Node Number

6 Number of Nodes Set

7 Not Used

8 Number of RNET CRC Errors

9 Number of RNET Overrun Errors

10 Internal Use Only

11 Internal Use Only

12 Internal Use Only

13 RNET Token Status:

bit 0 Self Test in Progress

bit 1 Initialize

bit 2 Watching Bus

bit 5 Using Token

bit 6 Passing Token

bit 11 Loopback Test Failure

bit 12 Solid-state Switch Failure

EXAMPLE

DIM INTAR(14)
CALL BASDRV(B.WHORU, STATUS, INTAR, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Processor model"INTAR(0)"node"INTAR(5)

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 63

SETCOMM --- Set Communication Parameters

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 30 Function Number Integer
STATUS Return Code Integer
ARG1 Node number Integer
ARG2 Number of nodes Integer
ARG3
ARG4

DESCRIPTION

Use this function to set the processor’s internal node number and the number of nodes that it
should recognize. This command affects only communications through the front
(programming) port.

COMMENTS

ARG2 should be set to the highest node number on the network plus one.

EXAMPLE

NODENO = 1
NODES = 2
CALL BASDRV(B.SETCOMM, STATUS, NODENO, NODES, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Processor set to node 1 of 3"

AutoMate Communications Driver - Functions

Page 64 October 21, 1996 Revision 2.625

CLRMEM --- Clear Application Memory

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 31 Function Number Integer
STATUS Return Code Integer
ARG1
ARG2
ARG3
ARG4

DESCRIPTION

Clears the application memory and forcer tables. The I/O configuration is not modified.

COMMENTS

WARNING! THIS FUNCTION WIPES THE ENTIRE APPLICATION MEMORY. THERE IS NO WAY

TO RECOVER THE CONTENTS OF THE PROCESSOR’S MEMORY IF YOU DO THIS.

EXAMPLE

CALL BASDRV(B.CLRMEM, STATUS, B, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Memory cleared."

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 65

MEMUSE --- Read Memory Use Statistics

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 32 Function Number Integer
STATUS Return Code Integer
ARG1 Returned data Long Integer array
ARG2
ARG3
ARG4

DESCRIPTION

This function returns four values describing the processor’s memory status in the first four ele-
ments of the integer array ARG1.

Note that the values returned are long integers (32 bits). Under Interpreted BASIC, you must
convert to floating point and scale pairs of array elements to get the correct values; for other
languages, declare the output array as long integer.

It is important to remember that the values are returned by MEMUSE are in bytes but the
AutoMatetm consumes memory in words, with each word consisting of two bytes.

COMMENTS

The four values returned are:

Element Description

0 Memory Size

1 EEPROM bytes used

2 R/W bytes used

3 Number of Power Failures

The Memory Size value is only of interest on processors with more than one possible memory
configuration. To interpret the Memory Size value, use the following table:

AutoMate Communications Driver - Functions

Page 66 October 21, 1996 Revision 2.625

Processor
Memory

Size
Total Memory
(EEPROM - Read/Write)

A15 - 2K - 4K

A20 - 4K - 12K

A30 0
1

4K - 4K
8K - 8K

A30E 0
1

8K - 8K
16K - 16K

A40
A40E

1
n

16K - 16K
n * 16K - n * 16K

EXAMPLE

DIM INTAR(4)
CALL BASDRV(B.MEMUSE, STATUS, INTAR(0), B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT 1.0*INTAR(1)+65536.0*INTAR(2)"bytes of application memory

free."

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 67

RDIOCFG --- Read I/O Configuration Table

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 33 Function Number Integer
STATUS Return Code Integer
ARG1 Storage for Table Integer array
ARG2
ARG3
ARG4

DESCRIPTION

A30 or A40 only. Reads the processor’s I/O Configuration Table into consecutive elements
of the integer array ARG1.

COMMENTS

The array ARG1 should be dimensioned to at least 902 bytes long in order to accommodate
the largest possible A40 configuration table. The A30 configuration table is 150 bytes long.

For information on how to decode the I/O Configuration Table, consult the Reliance Electric
AutoMate Communications Protocol Manual.

EXAMPLE

DIM INTAR(75)
CALL BASDRV(B.RDIOCFG, STATUS, INTAR(0), B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Configuration table:"
FOR LA=0 TO 74

PRINT " "RIGHT$("0000"+HEX$(INTAR(LA)),4)
NEXT LA

AutoMate Communications Driver - Functions

Page 68 October 21, 1996 Revision 2.625

WRIOCFG --- Write I/O Configuration Table

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 34 Function Number Integer
STATUS Return Code Integer
ARG1 New configuration Integer array
ARG2
ARG3
ARG4

DESCRIPTION

A30 or A40 only. Writes the contents of the integer array ARG1 to the processor’s I/O
Configuration table.

COMMENTS

This command always completely overwrites the current contents of the configuration table.
The length written is determined by the data in the table.

For information on how to decode the I/O Configuration Table, consult the Reliance Electric
AutoMate Communications Protocol Manual.

Warning! An incorrectly formatted configuration table can cause the processor to
crash. Use this command with great caution.

EXAMPLE

Assuming that a valid configuration is already found in the integer array NEWCONF:

CALL BASDRV(B.WRIOCFG, STATUS, NEWCONF(0), B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Configuration table written."

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 69

REQACC --- Request Protected Access

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 35 Function Number Integer
STATUS Return Code Integer
ARG1
ARG2
ARG3
ARG4

DESCRIPTION

Requests exclusive access to an AutoMate processor.

COMMENTS

You must execute this function before you can alter any processor memory locations, either
registers or application memory.

EXAMPLE

CALL BASDRV(B.REQACC, STATUS, B, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Access OK."

AutoMate Communications Driver - Functions

Page 70 October 21, 1996 Revision 2.625

CANACC --- Cancel Protected Access

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 36 Function Number Integer
STATUS Return Code Integer
ARG1
ARG2
ARG3
ARG4

DESCRIPTION

Releases exclusive access to an AutoMate processor.

COMMENTS

We recommend that you execute this command when you are done communicating with a pro-
cessor in order that other devices may gain access to it. You may wish to do this as part of the
exit procedure from your program.

EXAMPLE

CALL BASDRV(B.CANACC, STATUS, B, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Protected Access Released."
END

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 71

MEMDIAG --- Run Memory Diagnostic

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 37 Function Number Integer
STATUS Return Code Integer
ARG1 Return array Integer array
ARG2
ARG3
ARG4

DESCRIPTION

Runs a nondestructive test on the AutoMate processor’s memory. This function returns four
codes in the first four elements of the array ARG1.

COMMENTS

The processor must be halted before you can run this test.

The four return values are for the Scratchpad, R/W, EEPROM, and NVRAM memories
respectively. A nonzero return value indicates that the corresponding memory area failed its
test.

EXAMPLE

DIM INTAR(4),OK$(2)
CALL BASDRV(B.MEMDIAG, STATUS, INTAR(0), B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
OK$(0) = "Passed."
OK$(1) = "Failed."
PRINT"Scratchpad memory "OK$(SGN(INTAR(0))
PRINT"R/W memory "OK$(SGN(INTAR(1))
PRINT"EEPROM memory "OK$(SGN(INTAR(2))
PRINT"NVRAM memory "OK$(SGN(INTAR(3))

AutoMate Communications Driver - Functions

Page 72 October 21, 1996 Revision 2.625

IODIAG --- Run I/O Diagnostic

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 38 Function Number Integer
STATUS Return Code Integer
ARG1 Return array Integer array
ARG2
ARG3
ARG4

DESCRIPTION

This function tests the communications between the AutoMate and the I/O Rail or Local Head.
It returns a result code in each of the first four elements of the integer array ARG1, one code
per I/O port.

COMMENTS

A15 Only! The A15 processor must be halted before this test can be run.

Each result code can take on the following values:

Value Description

0 Port and Device passed test

1 I/O Reset Error

2 Clock Error

3 Serial Data Out Error

255 No rail connected

EXAMPLE

DIM INTAR(4)
CALL BASDRV(B.IODIAG, STATUS, INTAR(0), B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
FOR LA=0 TO 3
 IF INTAR(LA)<>0 THEN PRINT"Port"LA"failed test."
NEXT LA

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 73

GWAYDIAG --- Run Gateway Diagnostic

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 39 Function Number Integer
STATUS Return Code Integer
ARG1 No. of words to send Integer
ARG2 Send array Integer array
ARG3 Return array Integer array
ARG4

DESCRIPTION

Runs the Gateway loopback test. The ARG1 data words in the send array ARG2 are sent to
the Gateway and echoed back into the return array ARG3. If the test was successful, arrays
ARG2 and ARG3 should be identical after the call.

COMMENTS

ARG1 cannot exceed 38.

EXAMPLE

DIM SAR(30),RAR(30)
COU = 30
FOR LA=1 TO COU

SAR(LA)=RND*32767
NEXT LA

CALL BASDRV(B.GWAYDIAG, STATUS, COU, SAR(1), RAR(1), B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
FOR LA=1 TO COU

IF SAR(LA)<>RAR(LA) THEN PRINT"Test failed.":STOP
NEXT LA

AutoMate Communications Driver - Functions

Page 74 October 21, 1996 Revision 2.625

SETNOD --- Set Destination Node

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 40 Function Number Integer
STATUS Return Code Integer
ARG1 Node number Integer
ARG2
ARG3
ARG4

DESCRIPTION

Sets the node to which AutoMate command strings are sent. Also used with the Serial
Communications Card.

COMMENTS

If the computer is properly connected to the AutoMate and you are receiving "Timeout"
errors, the destination node or destination slot number is probably wrong.

EXAMPLE

NODE = 1
CALL BASDRV(B.SETNOD, STATUS, NODE, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Destination node set to 1."

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 75

SETDSLT --- Set Destination Slot

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 41 Function Number Integer
STATUS Return Code Integer
ARG1 Dest. Slot No. Integer
ARG2
ARG3
ARG4

DESCRIPTION

Sets the AutoMate chassis slot number to which command strings are sent.

COMMENTS

The default destination slot is Slot 1.

EXAMPLE

SLOT = 2
CALL BASDRV(B.SETDSLT, STATUS, SLOT, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Communicating with processor in Slot 2"

AutoMate Communications Driver - Functions

Page 76 October 21, 1996 Revision 2.625

SETSSLT --- Set Originating Slot Number

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 42 Function Number Integer
STATUS Return Code Integer
ARG1 New Org. Slot no. Integer
ARG2
ARG3
ARG4

DESCRIPTION

Sets the slot number from which command strings are originating.

COMMENTS

This should be set to the slot number of whatever device the computer is connected to.

Normally, there is no need to use this call as it is ignored by the processor.

EXAMPLE

REG = &O2000
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 77

SETBAUD --- Set Communication Rate

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 43 Function Number Integer
STATUS Return Code Integer
ARG1 Rate Code Integer
ARG2
ARG3
ARG4

DESCRIPTION

Sets the transmission rate used to communicate with the AutoMate processor.

COMMENTS

The following values are allowed for ARG1:

Value Baud Rate

0 110

1 150

2 300

3 600

4 1200

5 2400

6 4800

7 9600

8 19,200

The default value is 7 (9600 baud).

EXAMPLE

BAUD = 5
CALL BASDRV(B.SETBAUD, STATUS, BAUD, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Baud Rate set to 2400".

AutoMate Communications Driver - Functions

Page 78 October 21, 1996 Revision 2.625

SETSNG --- Set Single-Processor Mode

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 44 Function Number Integer
STATUS Return Code Integer
ARG1 Mode flag Integer
ARG2
ARG3
ARG4

DESCRIPTION

If ARG1 is nonzero, BASDRV will use short (single processor) frames to communicate with
the AutoMate. If ARG1 is zero, the driver will send long (multiple processor) frames.

COMMENTS

Short frames are normally only used with older versions of the AutoMate 15. All current
AutoMatetm processors support long frames.

EXAMPLE

A15FLAG = 1
CALL BASDRV(B.SETSNG, STATUS, A15FLAG, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
IF A15FLAG THEN PRINT"Sending short frames"

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 79

CLROFRC --- Clear Output Forcer Table

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 45 Function Number Integer
STATUS Return Code Integer
ARG1
ARG2
ARG3
ARG4

DESCRIPTION

Clears the processor’s Output Forcer Table. This may or may not actually clear all outputs
forced; please see the description of FRCCOIL, page 48.

EXAMPLE

CALL BASDRV(B.CLFOFRC, STATUS, B, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"No outputs forced."

AutoMate Communications Driver - Functions

Page 80 October 21, 1996 Revision 2.625

AUTOCOM --- Establish Communications

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 46 Function Number Integer
STATUS Return Code Integer
ARG1 Return array Integer
ARG2
ARG3
ARG4

DESCRIPTION

Establishes communication with an AutoMate device through the programming port. This
command will automatically set the frame length and destination node if possible. After the
call, the integer array ARG1 will contain the same data as that returned by WHORU.

COMMENTS

If you are connecting directly to the AutoMate processor’s front port, we recommend this
command as the simplest way to establish communications. If you execute AUTOCOM before
any other calls, you should not have to worry about any communications parameters (like
destination node, etc.).

You must use the manual setup (SETNOD, SETDSLT, etc.) instructions if you are
communicating over R-Net or via a Serial Communications Card.

EXAMPLE

DIM INTAR(14)
CALL BASDRV(B.AUTOCOM, STATUS, INTAR(0), B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Communications Established."
PRINT"Processor model number"INTAR(0)

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 81

SRBCONV --- Convert String to Register and Bit

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 47 Function Number Integer
STATUS Return Code Integer
ARG1 String to convert String
ARG2 Register return Integer
ARG3 Bit return Integer
ARG4

DESCRIPTION

Since BASIC provides no capability to convert an octal string to binary, ACS has provided
two functions to handle conversion and error checking on octal input strings.

COMMENTS

SRBCONV converts a string in the form "register.bit" to a register number in ARG2 and a bit
number in ARG3. It also checks that ARG2 is less than or equal to 377778 and that ARG3 is
less than or equal to 178.

If the string contains illegal characters, or if the return values are illegal, STATUS will be
nonzero. If the conversion was successful, STATUS will be returned as zero.

EXAMPLE

REG = 0
BIT = 0
INPUT"Enter point number";I$
CALL BASDRV(B.SRBCONV, STATUS, I$, REG, BIT, B)
IF STATUS<>0 THEN PRINT"Illegal Point Number":STOP
PRINT"Point decoded as "OCT$(REG)"."OCT$(BIT)

AutoMate Communications Driver - Functions

Page 82 October 21, 1996 Revision 2.625

SRCONV --- Convert String to Register

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 48 Function Number Integer
STATUS Return Code Integer
ARG1 String to convert String
ARG2 Register return Integer
ARG3
ARG4

DESCRIPTION

Converts an octal string to a binary register number returned in ARG2.

COMMENTS

If the string contains illegal characters, or if ARG2 is greater than 377778, STATUS will be re-
turned as nonzero.

EXAMPLE

REG = 0
INPUT"Enter register number";I$
CALL BASDRV(B.SRCONV, STATUS, I$, REG, B, B)
IF STATUS<>0 THEN PRINT"Illegal register number.":STOP
PRINT"Register decoded as "OCT$(REG)

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 83

SETDLA --- Set Communications Wait

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 49 Function Number Integer
STATUS Return Code Integer
ARG1 New Delay Integer
ARG2
ARG3
ARG4

DESCRIPTION

SETDLA allows you to control the length of time that BASDRV waits before returning with a
"Timeout Error". You may need to adjust the delay if you are working with a complex RNET
network or a large AutoMate program.

COMMENTS

The default delay is "1". Delay units correspond approximately to seconds. Therefore, values
below 100 are recommended.

EXAMPLE

DEL = 50
CALL BASDRV(B.SETDLA, STATUS, DEL, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

AutoMate Communications Driver - Functions

Page 84 October 21, 1996 Revision 2.625

WORDAR --- Unpack Word into Array

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 50 Function Number Integer
STATUS Return Code Integer
ARG1 Integer to unpack Integer
ARG2 Target array Integer Array
ARG3
ARG4

DESCRIPTION

This command splits an integer into its 16 component bits. It stores the bits in the first sixteen
elements of the target array. Bit 0 (the least significant bit) is assigned to element 0 of the
array.

EXAMPLE

REG = &O2000
REGCT = 1
REGVAL = 0
DIM BAR(16)
CALL BASDRV(B.RDREG, STATUS, REG, REGCT, REGVAL, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
CALL BASDRV(B.WORDAR, STATUS, REGVAL, BAR(0), B, B)
PRINT"Register 2000's value in binary: ";
FOR LA=15 TO 0 STEP -1

IF BAR(LA) THEN PRINT"1"; ELSE PRINT"0";
NEXT LA:PRINT

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 85

ARWORD --- Pack Array into Integer

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 51 Function Number Integer
STATUS Return Code Integer
ARG1 Source Array Integer Array
ARG2 Target Integer Integer
ARG3
ARG4

DESCRIPTION

This function is the converse of WORDAR. It packs the first sixteen elements of the source
array ARG1 into the destination integer ARG2. Element 0 of ARG1 determines the status of
Bit 0 of the destination integer.

COMMENTS

ARWORD checks each of the first 16 elements of the source array in turn. If the element is
nonzero, that bit of the target integer will be set. If the element is zero, the target bit will be
cleared.

EXAMPLE

Assume array BAR(16) has been initialized to the desired bit pattern...

REG = &O2000
REGCT = 1
REGVAL = 0
CALL BASDRV(B.ARWORD, STATUS, BAR(0), REGVAL, B, B)
CALL BASDRV(B.WRREG, STATUS, REGVAL, REGCT, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Register 2000 set to"REGVAL

AutoMate Communications Driver - Functions

Page 86 October 21, 1996 Revision 2.625

SETOND --- Set Origin Node Number

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 52 Function Number Integer
STATUS Return Code Integer
ARG1 New Origin Node Integer
ARG2
ARG3
ARG4

DESCRIPTION

Sets the origin node number. This is the node that the PC transmits from.

COMMENTS

The node number must be less than 255.

EXAMPLE

ONODE = 4
CALL BASDRV(B.SETOND, STATUS, ONODE, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"PC node set to"ONODE

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 87

SETMSK --- Set Interrupt Mask

* DISCONTINUED IN V2.0 *

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 53 Function Number Integer
STATUS Return Code Integer
ARG1 Mask Value Integer
ARG2
ARG3
ARG4

DESCRIPTION

Prior to Version 2.0, this function provided a way for the user to mask out interrupts that were
disturbing communications with the AutoMate. The advent of interrupt-deriven reception in
Version 2 removed the need for this function.

In order to maintain compatibility with previous versions, Version 2.0 of the AutoMatetm

Driver will accept calls to this function, but it always returns a STATUS value of zero and
does nothing.

AutoMate Communications Driver - Functions

Page 88 October 21, 1996 Revision 2.625

STPORT --- Set Communications Port

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 54 Function Number Integer
STATUS Return Code Integer
ARG1 Port Number Integer
ARG2
ARG3
ARG4

DESCRIPTION

Selects the communications port. By default, port COM1: is used.

COMMENTS

ARG1 can be 1 (COM1), 2 (COM2), 3 (COM3), or 4 (COM4). If you have trouble using
ports COM3 or COM4, you may need to set up the I/O Port Base Address. Please refer to
PSYST on page 95 for more information.

EXAMPLE

PORTNO = 2
CALL BASDRV(B.STPORT, STATUS, PORTNO, B, B, B)
PRINT"Communications Port Set to COM2"

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 89

RDCHEK --- Read AutoMate Checksums

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 55 Function Number Integer
STATUS Return Code Integer
ARG1 Application Checksum Integer
ARG2 20K Register Checksum Integer
ARG3 I/O Config. Checksum Integer
ARG4

DESCRIPTION

The AutoMate 20, 30, and 40 processors maintain three one-byte checksums of important
memory regions. These checksums can be used to monitor the integrity of a program running
on the AutoMate, since any modification of the application program or I/O configuration will
disturb the checksum.

COMMENTS

After this call, the current checksum values will be returned in the arguments as shown. Since
the checksums are byte values, the integers returned will always be between 0 and 255.

EXAMPLE

APPC = 0 : CC = 0 : K20C = 0
CALL BASDRV(B.RDCHEK, STATUS, APPC, K20C, CC, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT "Current checksums are:"APPC","K20C", and"CC

AutoMate Communications Driver - Functions

Page 90 October 21, 1996 Revision 2.625

STEXT --- Send Text to Serial Port

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 56 Function Number Integer
STATUS Return Code Integer
ARG1 String to send String
ARG2
ARG3
ARG4

DESCRIPTION

Sends an arbitrary text string to the serial port at the current baud rate. Strings are always sent
with one stop bit and no parity.

COMMENTS

You may wish to use this command to send dialing strings to a modem. Any reply from the
destination device will be lost. STATUS will return -1 if the string could not be transmitted
for some reason.

EXAMPLE

STR = "AT D 1 800 555 1212" + CHR$(13)
CALL BASDRV(B.STEXT, STATUS, STR, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP ELSE

PRINT"Dialing..."

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 91

FMO2MS --- Motorola Floating Point to Microsoft

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 57 Function Number Integer
STATUS Return Code Integer
ARG1 Count Integer
ARG2 Input Array (Motorola) Long Integer Array
ARG3 Output Array (Microsoft) Floating Point Array
ARG4

DESCRIPTION

The floating point format used by the AutoMate, called the Motorola Fast Floating Point
format, is not compatible with the real number types used on the PC. In order to read or write
floating point numbers on the AutoMate, you must first translate them to (or from) the PC’s
native format.

The FMO2MS command converts COUNT numbers in the AutoMate’s format (Input Array)
to the PC’s format (Output Array, single precision integer). Remember that AutoMate floating
point numbers are 4 bytes long.

EXAMPLE

' Display 8 floating point numbers stored at 2000-2017
DIM MOTAR(8) AS LONG
DIM MSAR(8) AS SINGLE
REG = &O2000 : COUNT = 16
CALL BASDRV(B.RDREG, STATUS, REG, COUNT, MOTAR, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
COUNT = 8
CALL BASDRV(B.FMO2MS, STATUS, MOTAR, COUNT, MSAR, B)
FOR L=0 TO COUNT-1:PRINT USING "#.###"; MSAR(L):NEXT L

AutoMate Communications Driver - Functions

Page 92 October 21, 1996 Revision 2.625

FMS2MO --- Microsoft Floating Point to Motorola

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 58 Function Number Integer
STATUS Return Code Integer
ARG1 Count Integer
ARG2 Input Array (Microsoft) Floating Point Array
ARG3 Output Array (Motorola) Longword Array
ARG4

DESCRIPTION

The floating point format used by the AutoMate, called the Motorola Fast Floating Point
format, is not compatible with the real number types used on the PC. In order to read or write
floating point numbers on the AutoMate, you must first translate them to (or from) the PC’s
native format.

The FMS2MO command converts COUNT numbers in the PC’s format (Input Array) to the
AutoMate’s format (Output Array, long integer). Remember that AutoMate floating point
numbers are 4 bytes long.

EXAMPLE

' Write 8 floating point numbers to 2000-2017
DIM MOTAR(8) AS LONG
DIM MSAR(8) AS SINGLE
COUNT = 8
FOR L=0 TO COUNT-1:MSAR(L)=L*3.14159:NEXT L
CALL BASDRV(B.FMS2MO, STATUS, MSAR, COUNT, MOTAR, B)
REG = &O2000 : COUNT = 16
CALL BASDRV(B.WRREG, STATUS, REG, COUNT, MOTAR, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 93

FRMPRO --- Frame Protect Options

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 59 Function Number Integer
STATUS Return Code Integer
ARG1 Protect Mask Integer
ARG2
ARG3
ARG4

DESCRIPTION

Not valid for Windows DLLs.

The Frame Protect command is intended for use with multitasking operating environments like
DesqView™. It will attempt to protect the time-critical portions of the communications cycle
from interruption by other tasks.

Currently, the only frame protect options allowed are:

ARG1 Protection

1 DesqView Protection On

0 No Protection.

In Version 2.0, the Frame Protect command only operates with DesqView™. It will have no
effect on other operating environments.

If you are using DesqView™ and notice frequent Timeout or Checksum errors, you should try
enabling Frame Protect.

EXAMPLE

' Enable Protection under DesqView™
FLAG = 1
FOR L=0 TO COUNT-1:MSAR(L)=L*3.14159:NEXT L
CALL BASDRV(B.FMS2MO, STATUS, MSAR, COUNT, MOTAR, B)
REG = &O2000 : COUNT = 16
CALL BASDRV(B.WRREG, STATUS, REG, COUNT, MOTAR, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

AutoMate Communications Driver - Functions

Page 94 October 21, 1996 Revision 2.625

OFF --- Deactivate Driver

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 60 Function Number Integer
STATUS Return Code Integer
ARG1
ARG2
ARG3
ARG4

DESCRIPTION

Version 2.0 of the Driver normally uses your computer’s hardware interrupts to ensure reliable
communications, even when running in a multitasking operating environment. It is
ABSOLUTELY ESSENTIAL that you allow the Driver to deactivate these interrupts before you
exit your application program. If you fail to do this, your computer may crash unpredictably,
even long after you have left your program.

The OFF function deactivates the hardware interrupts and deactivates the communications port
that was in use by the Driver. You should call the Driver with OFF as the function before your
program returns to DOS. C programmers can use the atexit function to make sure OFF gets
called; users of other languages must perform the call as part of their exit routines.

The OFF function is available both as a normal BASDRV call, and through its own entry point.
To use the direct entry, execute a CALL BASDRVOFF. Either method will safely shut down
the Driver.

EXAMPLE

' End of program. Shut down Driver before leaving
CALL BASDRV(B.OFF, STATUS, B, B, B, B)
END

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 95

PSYST --- Set Port System Parameters

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 61 Function Number Integer
STATUS Return Code Integer
ARG1 I/O Port Base Address Integer
ARG2 Transmit Mode Integer
ARG3 Receive Mode Integer
ARG4 Interrupt Chaining Enable Integer

DESCRIPTION

Not valid for Windows DLLs.

The PSYST command is used to manipulate certain low-level operating parameters. Most
users will never need to call PSYST. If you do need PSYST, use it with GREAT CAUTION.
Incorrect parameters to PSYST call cause your system to lock up or crash.

The first parameter, ARG1, tells the Driver the address of your serial communications port.
Normally, it can find out this information from the computer’s BIOS, but there are some
situations where you may need to set the Port Address manually.

Certain computers cannot automatically detect all of their serial ports. This usually happens
when there is a "gap" in the port sequence (e.g., you have COM1 and COM3 but no COM2).
The Driver can use these "missing" ports to communicate, as long as you use the PSYST
command to tell it where the ports are located.

The standard serial port addresses are:

Port I/O Base Addr (Hex) Interrupt

COM1 3F8 IRQ4

COM2 2F8 IRQ3

COM3 3E8 IRQ4

COM4 2E8 IRQ3

You should use the correct address from the table above, unless you are sure that your
communications port is located elsewhere.

The second and third arguments control the strategy used by the Driver to actually transmit
and receive data. The defaults should be acceptable on most systems, but you may need to
change modes if you have difficulty communicating or if you experience unexplained system
crashes.

AutoMate Communications Driver - Functions

Page 96 October 21, 1996 Revision 2.625

The legal modes for ARG2 (Transmit Strategy) and ARG3 (Receive Strategy) are:

Mode Strategy

0 BIOS. The Driver uses BIOS calls to perform I/O. Slowest
but most widely compatible mode.

1 Direct. The Driver manipulates the communications port
hardware directly using I/O Ports. Fastest transmit strategy,
acceptable receive strategy.

2 Interrupt Driven. Hardware interrupts pace I/O. Best strat-
egy for reliable reception.

The default strategies are 1 (Direct) for Transmission and 2 (Interrupt Driven) for Reception.
These modes should be the best selection for most situations.

We do not recommend that you use Interrupt Driven Transmission unless it is absolutely
necessary. This mode is slower than Direct Transmission, and it will usually degrade system
performance significantly: an interrupt will be generated for each outgoing and each incoming
character.

Interrupt Driven Reception, however, is recommended unless prohibited by your system
configuration. Since the AutoMatetm does not provide hardware handshaking to pace its
transmissions, this is the only mode that can ensure the proper capture of all incoming data
bytes.

The last PSYST parameter, ARG4, controls Interrupt Chaining. Normally, once the Driver
has serviced an interrupt, it returns control directly to the interrupted process. In some
circumstances, however, it may be desirable to pass control to the interrupt handler that
previously serviced the interrupt in question. If you set ARG4 to a non-zero value, the Driver
will "chain" control to the previous handler once it has completed its own service routine.
Note, however, that the serial port will already have been serviced once control is passed; this
may confuse some handlers.

If you don’t understand the previous paragraph, don’t worry. Just pass PSYST a zero value
for interrupt chaining and skip ahead to the Example; zero (No Chaining) is the default value
and should be used unless there is a particular reason to activate chaining.

Shared Interrupts. There is one instance where the Driver will chain to another handler
regardless of the ARG4 setting. If an interrupt is received on the current interrupt line that
was not generated by the current serial port controller, the Driver will pass control to the
previously existing handler. It will perform no service.

This automatic chaining is needed for systems which have shared communications interrupts in
simultaneous use. For example, COM1 and COM3 share the same interrupt signal line, IRQ4.
If both of these ports are in use simultaneously, each handler must pass control to the other if
the interrupt is not "for them." The Driver supports this type of sharing, though many other
software packages do not.

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 97

EXAMPLE

' Select COM3 with normal I/O strategies
PORTN = 3
BADDR = &H3E8 : XMODE = 1 : RMODE = 2 : CHMODE = 0
' Switch to COM3
CALL BASDRV(B.STPORT, STATUS, PORTN, B, B, B)
' Set base address
CALL BASDRV(B.PSYST, STATUS, BADDR, XMODE, RMODE, CHMODE)

AutoMate Communications Driver - Functions

Page 98 October 21, 1996 Revision 2.625

KEYPORT --- Set Hardware Key port

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 63 Function Number Integer
STATUS Return Code Integer
ARG1 Hardware Key Port Integer
ARG2
ARG3
ARG4

DESCRIPTION

By default, the Driver assumes that the Hardware Key is located on LPT1. However, you can
tell the Driver to look for the Key on another parallel printer port with this command. ARG1
selects the port where the Key is located and can range from 1 to 3.

When you execute the KEYPORT command, the Driver will immediately try to locate the Key on
the new port. If the Key is not found, the Driver will return a STATUS value of -2.

Note. This command is not needed for Windows DLL Drivers or the Incorporated
Versions of DOS Drivers; those products have no copy protection.

EXAMPLE

' Select LPT2 for Hardware Key
PORTN = 2
CALL BASDRV(B.KEYPORT, STATUS, PORTN, B, B, B)
IF STATUS=-2 THEN PRINT"Hardware Key Not Detected.":STOP

AutoMate Communications Driver - Functions

Revision 2.625 October 21, 1996 Page 99

PCLINK --- Set Up R-Net PC Link

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 64 Function Number Integer
STATUS Return Code Integer
ARG1 I/O Port Address Integer
ARG2 PC Link Node Number Integer
ARG3 PC Link Max Node Number Integer
ARG4

DESCRIPTION

The Reliance R-Net PC Link card is an adaptor that can connect your computer directly to R-
Net. When using the PC Link, your computer becomes a node on the R-Net without the need
for a Gateway.

Executing the PCLINK command will cause the Driver to initialize the PC Link card. If the
initialization is sucessful, all further Driver communications calls will be processed via the PC
Link, not the serial port.

Before executing the PCLINK command, you must know the “I/O Port Base Address” that has
been selected for the PC Link card. This address is set using DIP switches on the card. The
factory-selected address is 250 Hex.

Note. You must start up the PC Link card before you can communicate with it using
the Driver. This is done using the RTINST utility supplied with the PC Link.
RTINST will load the PC Link’s executive program onto the card and start it up.

If you do not start up the card before starting your application that uses the
Driver, the PCLINK command will fail because the PC Link will appear to be
“not there.” The PC Link will not respond to requests from the Driver until it
has been properly started up.

If you are communicating via the PC Link, calling PCLINK with ARG1 (the I/O Port Address)
equal to zero will disconnect the PC Link card and return the Driver to serial operation.
Executing the OFF command will also disconnect the PC Link.

Using the PCLINK command will automatically set the correct source node (the equivalent of
executing a SETOND command with the Node Number argument equal to ARG2). To
communicate with a particular processor, you will still need to select the destination node and
slot of the target using the SETNOD and SETDSLT commands respectively.

Note. If you are using a 386 memory manager like HIMEM / EMM386, 386MAX, OR

QEMM, you need to take special care while using the PC Link Card. It is

AutoMate Communications Driver - Functions

Page 100 October 21, 1996 Revision 2.625

“invisible” when your computer is first powered on, and only becomes
operational after being started by the RTINST utility.

Accordingly, the card will not be automatically detected by most memory
managers. These programs will “map” memory over the PC Link’s shared
memory area, causing the computer to malfunction.

You will need to configure your memory manager to “exclude” the 16KB
region indicated when you started the card with the RTINST utility. This is
especially important if you plan to use the Driver DLL under Microsoft
Windows. If the PC Link has not yet been initialized when Windows is started,
the DLL will be unable to communicate with the card.

Consult your memory manager’s documentation for more information on
“excluding” addresses. For EMM386.EXE, if you started the card with a memory
address of D000, you would add the text “X=D000-D3FF” to your EMM386
command line in the config.sys file.

EXAMPLE

'
' Connect via R-Net PC Link at base address 250 Hex with
' node number 2 and max node number 5
BASE = &H250
PORTN = 2
MAXN = 5
CALL BASDRV(B.PCLINK, STATUS, BASE, PORTN, MAXN, B)
IF STATUS=0 THEN PRINT"Communicating via R-Net PC Link" ELSE

PRINT"Cannot connect with PC Link, error "STATUS:STOP

