MODBUS ™
Communications
Driver ActiveX

User’s Manual

Version 1.012 --- March 4, 1998

Copyright © 1988 - 1999, Automation Consulting Services, Inc. All rights reserved.

Subject to change without notice.

Table of Contents

SOFTWARE LICENSE . ..ottt taee et eaaasasssaesessaesesesssassssssssssnsnsnsnsnsnrnnnnes 1
INTRODUGCTION oottt ettt ettt e e e s s s e s ettt eeessssse b reereeeeesseaeraeees 3
BUILDING MODBUS DRIVER APPLICATIONS ..o 4
Driver Control 7egistrartion.coeueeeiioiiiiuiiiiieieicieeceeee e 4
Adding the Control t0 Your Projectcoeeveueuevieuioeeiiieieiiieiceeccecee s 4
Adding an instance of the Control................cccoovvvviviiiiiiiniiiiiiiece 4
SCLHING PIOPEILLIES......oeeieeee e 5
Sending MODBUS COMmMANScccooviuiiiiiiiiiiiiiiiicicicccecccc e 5
Additional Capabilities................c.cooooveviiiiiiiiiiiiiiiieiece 6
L@F AN =1 I 1)\ [PP 7
TDE QDL .cccooveeeeeeeeeeeeeeeeeeeeeeeeeee ettt e ettt aaaanaaas 7

PO STIAI POTE oottt ettt ettt e e e e e e et et treee e e e e e eeeaaaas 7

AT SCTIAI POTE oot et e e e et e e s e e e e et 8
HARDW ARE LOCK ..ottt ettt ettt e s st ase v et e s e e st s sasbs et eteeesssasessrareeeeeessnias 9
HOTATDATE LLOCK.....cooeeeeeeeeeeeeeeeeeeee e e e e e e e 9
ERROR CODES. ...ttt ettt 10
[y O o I 1O]\ TR 11
SLAVE / AUTOPARSE FRAME EXAMPLE ..., 12
A R AN T S 14
USER FRAME EXAMPLE ... 15
PROPERTIES ..o, 18
Understanding Properties.........cocovcioiniiniinniiiniiiiiciiccieeeeeeeceecneeeenenes 18
Property SUMmary..........cccoiiiiiiiiiiii e 18
SEr1aAL POTE PATATELETS «.eeeeeeiiieeeeeeeeee ettt e e e e et 18
TIIBEOUES oottt e e e e e e e et et ee e e e e e e e e et a e reeaeaeaaaans 19
Communications TrACING...............c.ccocueiiiiiiiiiiiiiiieeceeee e 19

User Frames and Asynchronous OQperationccccceveeeeieiiiencoieciececieeencenne 19

OLBEF PrOPETLLES. ... 19
AsyncButton Property ..ottt 19
AsyncHandshake Property ..o 21
AsyncMessage Property.........cocooiiiiiiiiiiiiiiicc 21
AutoParse Property ... 22
AutoParse parameter table ... 25
Baud Rate Propertyccociviiiiiiiniiiiiiiiiccceceeee e 27
Char TImeout PrOPErtycccovieieiiininieiciireeeecere ettt 27
Comm Port Property........ccccviiiiiiiiiiiiiiiiiiiiciciceeeeeeeeeeeee e 28
Frame Timeout Property ...t 28

I/O Mapping Property ..o 29

Key Port Property ... 29
Last Error Property ... 29
Last Error String PrOpertycccoccvireiniiniicincinciniccieceeceereeseeeseeeseeveseevens 30
Parity Property....ccoc e 30
Stop Bits Property ..c..c.civiiiiiiiiiiiicicccc e 30
Trace Enable Property ...t 31
Trace File Property ..ot 31
METHODS. ..o 32
Understanding Methods.........ccoiiiiiiiiiiiiccc e 32
ConVersion FUNCLIONSccocovviiiiiiiiiiiiicicc 32
DiaGNOSIICS ..o 32
Recerving and Interpreting Commandsccocooevveeeiiiiiiiiiiiiiiiiiccee 33
Reading VAlUes................c.ocoooiiiiiiiiiiiiiceee 33
Sending User Commandsccocooveuevueiiiiiiiiiiiiiieiciceeceeeeee 33
WrIting VAIUESc.ocoooieiiiiiiieeee e 33
Optional arguments in Cu....coiiviiiiiiiiiniiiiicic e 33
Array To Word Method ...t 34
Fetch Event Counter Method.........cccccoiiiiiiiiiniiiiiiiiiiiciicccccee 34
Fetch Event Log Method.........ccccoiiiiiniiiiiiiiiiiiicccccccceees 34
Force Coil Method.........ccoouiiiiiiiiiiiiiiiiciiciccee s 35
Force Multiple Coils Methodccooueiiiiiiniiiiiiiiiiiiiicicccceee 35
Loopback Methodcccouiiiiiiiiiiiiiiiiiccc s 36
Read Exception Status Method........ccociiiiiiiiiiiiiiiiiiiiicccces 36
Read General Reference Method........ccoooiiiiiiiiiiiiiiiiiiiccccce, 36
Read Input Registers Method ..o, 37
Read Input Status Method......c.cociviiiiiiiiiniiiiniiiiiccccccesceeeeeeees 37
Read Output Registers Methodccveeviiiciiniciiniiiiiciicicccceceerceenen, 38
Read Output Status Method........ccccvvveiniiniiiiniiiicicccc e 38
Receive MEthod......covveuiiiiiiiiiciiciiictrictcccteee ettt 39
Recerve method Technical Nofe.................ccocoovviiiiiiiiiiiiiiiiiiicic e 39
Receive AutoParse Method......c.coceeiiieinieiniicniniciniciccccceeceee e 40
Receive Get Byte Methodccccoviiiiiiiiiiiiiiiiccececa 42
Receive Get Integer Method........cccviieiniiiniiciiniiiiiciicicccecccese e 43
Release Comm Port Method........cooviuiiiiiniiiiiiniiicinccceceeereene, 43
Report Slave ID Method......cc.ceeiiiiniiiniiiiiiiniciiciniccecniceeeteet et 43
Trace String Method ..o e 44
User Add Byte Methodc.ciiiiiiiiiiniccecceeeceseeee e 44
User Add Integer Method........ccoviiiiuiiininiiciinecceeeeeeee e 45
User Init Method.......ccoiiiiiiiiiiiiiicce e 46
User Send Method ..o 46
UserSendAutoParse IMethod.........c.ccciviririiiciinneeinccereeeeeee e 47
Word To Array Method ..ot 48
Write General Reference Method.........cccocciiiiiiiiiiicccce, 48
Write Multiple Registers Method.........ccocoiiiiiiiiiiiiiiiiccccee, 49
Write Register Methodcc.cooiiiiiiiiiiiiiiiiiiicccceeeeee 49

MODBUS Driver ActiveX Control
Software License

IMPORTANT! The enclosed materials are provided to you on the express condition that you agree
to this Software License. By opening the diskette envelope or using any of the enclosed diskette(s)
you agree to the following provisions. If you do not agree with these license provisions, return these
materials to Automation Consulting Services, Inc., in original packaging with seals unbroken, within
3 days from receipt, for a refund.

1. This software and the diskette on which it is contained (the “Licensed Software”), is licensed to
you, the end user, for your own internal use. You do not obtain title to the Licensed Software or
any copyrights or proprietary rights in the Licensed Software. You may not transfer, sub-license,
rent, lease, convey, copy, modify, translate, convert to another programming language,
decompile, or disassemble the Licensed Software for any purpose.

2. The Licensed Software is provided “as-is”. All warranties and representations of any kind with
regard to the Licensed Software are hereby disclaimed, including the implied warranties of
merchantability and fitness for a particular purpose. Under no circumstances will the
Manufacturer or Developer of the Licensed Software be liable for any consequential, incidental,
special, or exemplary damages even if apprised of the likelihood of such damages occurring.
Some states do not allow the limitation or exclusion of liability for incidental or consequential
damages, so the above limitation or exclusion may not apply to you.

Incorporated Driver Amendment

If you own OEM Version of the ACS MODBUS driver, this license is amended to provide for the free
or for-profit distribution of software incorporating MODBUS Driver code as follows: you may
distribute executable programs containing the complete and unaltered ACS MODBUS Driver
(Incorporated Version). The Incorporated Version Libraries may not be copied, sold, modified,
distributed, or used by more than one user at a time; they are treated as Licensed Software as
described above. You can only distribute the Driver as a part of self-standing executable code (EXE
files). No royalties or additional licenses are required to distribute such standalone programs.

For Windows DLLs, you may distribute the DLL (distribution) version without royalties, but you
may not distribute the Development (VBX) version. It is treated as Licensed Software as described
above.

For the MODBUS Driver ActiveX control, you may distribute the ActiveX file MVBDRVCTL. OCX only
with your applications. The printed documentation and help files are considered Licensed Software
as indicated above. Specifically, you may not sell or otherwise distribute the MODBUS Driver ActiveX
control other than with an application or for use other than as a communications component.

MODBUS Driver ActiveX Control

MODBUS Driver ActiveX Control
Introduction

The ACS MODBUS Driver ActiveX Control is a software component that allows application
programs written in a wide variety of languages to communicate with devices that understand the
Gould MODBUS RTU protocol.

The Driver is provided as an ActiveX component (formerly known as OLE Custom Control or
“OCX?”). It allows your program to communicate with MODBUS devices by invoking methods and
setting properties. The Driver control handles the MODBUS protocol implementation, variable
conversion, error checking, serial port management, and so on. Information is passed to and from the
control (and hence the MODBUS device) using the host language’s native variable types.

The Driver ActiveX control can be used with any language or development environment that
supports ActiveX controls, including C++, Visual Basic, Delphi, and many others. It supports the
Microsoft Windows 95 and Windows N'T operating systems.

The Driver directly implements all the commonly used MODBUS commands. If your application
requires non-standard commands, the control provides methods that allow you to “build” your own
MODBUS command frames and send them. In addition, programs that use the Driver control can act
as MODBUS “master” or “slave” devices, either initiating or accepting commands.

MODBUS Driver ActiveX Control
Building moDBUS Driver Applications

Most applications that use the MODBUS Driver ActiveX control will perform the following steps:

Driver Control registration

Before you can use the Driver ActiveX control, you’ll need to make your programming language
aware of it. This process is called “registration.”

Most languages provide a simple way of adding new ActiveX components to a project. In Visual
Basic 5, for example, you can register the Driver ActiveX control by selecting the “Project /
Components...” command, clicking the “Browse...” button, navigating to the directory where the

Driver control is located, and double-clicking the file MBDRVCTL. OCX. Other languages provide

similar facilities.

You only need to perform this registration step once, the first time you want to use the Driver
ActiveX control. Once the control is registered, it will be available to all applications on the host
system.

Adding the Control to your project

Once the control is registered, you need to add it to your project. Again, the exact procedure will vary
according to the language, but most languages follow a model similar to Visual Basic.

In VB5, you can add the Driver ActiveX control to a project by selecting the “Project /
Components...” command and checking the box next to “MODBUS Driver ActiveX Control.” This
will make the control available on the VB tool palette.

Adding an instance of the Control

To be able to use the Driver, you must add an instance of the Driver ActiveX control to your
program. For languages like Visual Basic, this is as simple as “drawing” a MODBUS control on one of
your application’s forms.

The MODBUS Driver ActiveX control looks like this on the VB tool palette: ™

Once you’ve drawn a MODBUS control on your VB application’s form, it will look something like

this:
M|

C-++ users can create an instance of the control in one of two ways. The simplest way is to draw a
MODBUS control on one of your application’s dialog boxes, much as one would in VB. When you
add the Driver ActiveX control to your C++ project, the development environment will create a
“wrapper” class for it. This class, which will probably be called something like CMBDr vCt r | , allows
you to access the control’s properties and methods using ordinary C++ member functions. So, you
can create an instance of the MODBUS ActiveX control anywhere in your program just by declaring or
allocating a variable of the “wrapper” class.

MODBUS Driver ActiveX Control
Setting Properties

Once the control exists, you can use your development environment’s “object inspector” or property-
sheet examiner to set the control’s basic properties, such as communications port, baud rate, and so
on. These “persistent” properties will be saved with the control and hence be “remembered” from
session to session.

If your application will not be changing these properties, it makes sense to set them once and store
them with the control, rather than setting the properties each session under program control.

Sending MODBUS commands

If the communications parameters are set, you are ready to send MODBUS commands. The Driver
ActiveX control has methods for the most commonly-used MODBUS commands. To send a
command, you simply need to invoke the correct method.

For example, let’s suppose that you want to read the current contents of Input Registers 30010
through 30020 from a MODBUS device whose address is 9. Consider the following Visual Basic code
fragment:

Dimstatus As Integer, V As Variant, n As |nteger
status = MB. Readl nput Regi sters(9, 30010, 11, V)

If status <> 0 Then
MsgBox "Read Input Registers failed, error: " +
MB. LastErrorString(), _
vbOKOnly Or vbExclamation, "Read | nput Registers Test"

El se
For n = 0to 10
Debug. Print 30010 + n; " ="; V(n)
Next n
End If

Note. This code assumes that the current form contains a MODBUS Driver control named

“MB.”

The code segment begins by requesting the values of 11 Input Registers starting at 30010 from the
MODBUS device whose address is 9 using the ReadInputRegisters method. When the method
returns, the variable St at us will contain either O for success or an error code.

If the Read Input Registers request fails, St at us will be nonzero, so the code fragment displays a
message box. The MsgBoX statement uses the LastErrorString property to retrieve a text error
message so the user will easily be able to tell what went wrong.

If the request succeeds, the requested register values will be stored in the Variant V as an integer
array. The contents of register 30010 will be in V(0) ; the contents of 30011 will be in V(1) ; and so
on. The example simply uses the VB Debug object’s Pri nt method to display the contents of the
11 registers in the Immediate window.

Obviously, a real application would display these values in a more useful way, or otherwise act on the
data values. However, the example should show you the basic procedure used when calling the
MODBUS Driver ActiveX control to send MODBUS commands.

MODBUS Driver ActiveX Control
Additional Capabilities

Most MODBUS Driver applications will probably find the control’s normal MODBUS command
methods contain all the functionality they need. Should the situation arise, the Driver ActiveX
control provides some specialized features:

* Incoming command processing. Most MODBUS applications will probably operate as MODBUS
“masters,” that is, they will send command and wait for replies. However, the Driver does
support “slave” operation. If you need to accept commands from MODBUS devices, see the
Receive method section.

* Non-standard commands. The MODBUS Driver ActiveX control contains a generous subset of
the commands allowed by the MODBUS protocol. If you find that the Driver does not provide a
dedicated method for a MODBUS command that you need to send, you can employ the User
command frame methods to build and send unsupported commands.

MODBUS Driver ActiveX Control
Cabling

Normally, your ACS software will be supplied with a cable suitable for connecting the IBM PC or
compatible to the MODBUS device.

However, some of our customers find that they need to make their own cables. This section
describes the cable and pinouts at each end of the connection. The serial port pinouts are included
for reference, since they are not often described in computer manuals.

The Cable

You can use the Driver with a three-wire (Transmit Data, Receive Data, and Ground) cable. ACS
uses the following cable:

Conductor Signal IBMPCPin IBMATPin Device Pin

1 Ground 7 5 7
3 TD 2 3 3
4 RD 3 2 2

Unfortunately, not all MODBUS devices have standard serial ports. You may need to experiment in
order to find the correct cabling setup. A “breakout box” or similar device can be very helpful while
trying to set up a serial communications link.

PC Serial Port
The IBM PC serial port is a DB25M (25-pin Male) connector. Here are its pinouts (pins not listed

are No Connection):

Pin Direction Signal

1 Shield Ground

2 Output Transmit Data

3 Input Receive Data

4 Output Request to Send

5 Input Clear to Send

6 Input Data Set Ready

7 Signal Ground

8 Input Carrier Detect

9 Output + Transmit Current Loop
11 Output - Transmit Current Loop
18 Input+ Receive Current Loop
20 Output Data Terminal Ready
22 Input Ring Indicator

25 Input- Receive Current Loop

Note. Only strictly IBM-compatible serial ports implement the 20ma current loop interface.
7

MODBUS Driver ActiveX Control

AT Serial Port

The IBM PC AT serial port is a DBIM (9-pin Male) connector. Here are its pinouts:

Pin

O 0 N O L1 AW DN

Direction
Input
Input
Output
Output

Input
Output
Input

Input

Signal

Carrier Detect
Receive Data
Transmit Data

Data Terminal Ready
Ground

Data Set Ready
Request to Send
Clear to Send

Ring Indicator

MODBUS Driver ActiveX Control
Hardware Lock

Unfortunately, software piracy is a problem that plagues all program developers: the temptation to
copy an unprotected disk is great, and there is little actual danger to the pirate. But copy protection
often offends users and sometimes involves unnecessary “hassles”. In order to keep everyone honest
(with a minimum of trouble for the user) ACS has decided to issue all of its single-user Driver
products in copy-protected form.

Note. OEM versions of the Driver ActiveX control are not copy protected.
Hardware Lock

A Hardware Lock protects the single-user Driver. Programs protected with a Hardware Lock come
on ordinary floppy diskettes. You can (and should) make backup copies of the protected files, using
the DOS di skcopy command if you wish. The protection is incorporated into the files themselves
and into the locking device.

The Hardware Lock itself is a small device resembling a “gender changer.” It has two 25-pin
connectors on it, one male and one female.

When you run a program protected with a Hardware Lock, the software will periodically examine
your computer’s parallel printer port. If the correct Hardware Lock is found, the program runs
normally. If the locking device is not present, the program will not operate.

To use the Hardware Lock, simply copy the original program diskettes into a directory on your hard
disk. Next, plug the male end of the Hardware Lock device into your computer’s parallel printer
port (LPT1). If there is a printer already attached to your system, simply plug its cable into the
temale end of the Hardware Lock.

Once you have attached the locking device, you are ready to run the software. Your computer should
operate just as before; the device is only active when the software specifically queries it. The Lock is
also transparent to printing.

By default, the Driver looks for the Hardware Key on printer port LPT1. To change the port where
the key is found, use the KeyPort property.

If you are using the default port, LPT1, there is no need to set the KeyPort property. The Driver will
return an error code of -4 if the key is not detected.

MODBUS Driver ActiveX Control
Error Codes

The MODBUS Driver ActiveX control reports errors in two different ways, by using numeric error
codes and by throwing exceptions. Error codes are used to report communications problems, while
exceptions are reserved for more severe conditions that may indicate faults in your application code.

For example, if you send a MODBUS command, and no reply is received, the Driver will report a
Timeout error. However, if you attempt to tell the Driver to send a command to an illegal MODBUS
address, or if you supply a parameter (such as a register address) with an invalid value, the control will
throw an exception.

Error codes are also used to indicate problems reported by the MODBUS device. For example, most
MODBUS devices implement only a subset of the available commands. If you use a Driver method to
send a command that the device doesn’t support, it will return an error code.

Here are the currently defined error codes:

Error Code Constant

No error 0 nbdEr r or _None
Hardware Key not found -4 nbdEr r or _NoKey
Receive Operation Failed -3 nmbdEr r or _NoRecv
Could not send frame -2 nmbdEr r or _NoSend
Timeout -1 nbdEr r or _Ti neout
Bad frame received 1 nmbdEr r or _BadFr ane
CRC error 2 nmbdEr r or _CRC
Returned Frame check failed 3 nmbdEr r or _Ret Check
MODBUS 01: Illegal Function 101 nbdError _MB Func
MODBUS 02: Illegal Data Address 102 nbdError_MB_Addr
MODBUS 03: Illegal Data Value 103 nbdError_MB Dat a
MODBUS 04: Failure in Associated Device 104 nbdError_MB Fail
MODBUS 05: Acknowledge 105 nbdError_MB_Ack
MODBUS 06: Busy, Rejected Message 106 nbdError _MB_Busy
MODBUS 07: NAK 107 nbdError _MB_NAK
MODBUS 08: Memory Parity Error 108 nbdError_MB Parity

MODBUS errors are handled by adding 100 to the value returned in the error frame from the MODBUS
device. As a consequence, if you encounter an error greater than 108, subtract 100 from the number
to obtain the MODBUS error identification number.

Such error numbers are not defined in the protocol specification, so you will need to consult your
device’s documentation to determine their meaning.

10

MODBUS Driver ActiveX Control
Exceptions

The OLE specification provides a way for an embedded control (like the Driver ActiveX control) to
signal serious error conditions to its host. To signal such an error condition, the control can “throw
an exception.”

The MODBUS Driver ActiveX control uses exceptions for serious error conditions, either internal
errors or problems that indicate faults in your application code. For example, if your code tells the
Driver to send a command to an illegal MODBUS address, or if you supply a parameter (such as a
register address) with an invalid value, the control will throw an exception.

The exception mechanism is very different from the numerical error codes used to signal
communications problems. An exception causes the currently executing method to abort immediately
and send a special signal to the host (“container”). How the host reacts to this signal depends on the
programming language.

By default, most languages and development environments will stop your application and display an
error box when an exception occurs. Depending on your programming language’s features, you may
be able to prevent or alter this behavior.

C++, for example, provides the t ry ... cat ch construct to handle exceptions. By enclosing a
Driver call in a t r y block, you can intercept and handle any exceptions that may occur.

Visual Basic provides exception handling via the on error got o statement. When an exception
occurs after an ON err or got o statement, control flows to the statement named in the on
error command. Your code can then determine what action to take and resume normal execution.

It should be stressed that you normally shouldn’t need to worry about the exception mechanism.
Once your code is debugged, the Driver control should never need to throw an exception. If an
exception does occur in debugged code, the situation is probably very serious.

During debugging, exceptions are actually very valuable. By stopping the program and signaling a
serious error, the Driver is telling you that there is probably a bug in your code. This makes finding
errors much quicker.

“Routine” communications errors (such as Timeouts and CRC errors) do no# cause the Driver to
throw exceptions. Instead, these problems are reported via the error code returned by each method.
Your code needs to check for and handle these errors, obviously, but you probably don’t need to
worry about exception handling for most applications.

11

MODBUS Driver ActiveX Control
Slave / AutoParse Frame Example

This example shows how one might process incoming MODBUS commands. The code acts as a
MODBUS slave device.

For the purposes of this example, this code responds on/y to Read Output Status commands
addressed to MODBUS address 17. All other commands and addresses are ignored.

The example returns a simple bit pattern regardless of the address requested. In a real application,
you would obviously want to use the starting register address to determine what data gets sent.

This code assumes that the form contains:
« A MODBUS ActiveX control called MB.

* A hidden button called RTHi dden.
Private Sub Form Load()
Start the serial port watcher by setting the AsyncButton property
to the invisible button's wi ndow handl e
MB. AsyncButton = RTHi dden. hWwd

End Sub

Private Sub RTH dden_Cl i ck()

Read conmands
Dimrc As Integer
Di maddr As Integer, cnmd As |nteger
DimstartCoil As Long, ct As Integer
Di m hp As | nteger
rc = MB. ReceiveAutoParse(addr, cnd)

If addr <> 17 O cnd <> 1 Then

Exit Sub ' Not a conmand we care about

MB. AsyncButton = RTHi dden. hwhd ' Reset wat cher

End I f
startCoil = MB. AutoParse(0) ' Read starting coil nunber
ct = MB. AutoParse(1) ' Read count
hp = ct / 16 ' Make array for bit val ues

ReDim bits(hp + 1) As Integer

For n = 0 To hp ' Set up sinple bit pattern
If n And 1 Then
bits(n) = &HCOCO
El se
bits(n) = &H505

12

MODBUS Driver ActiveX Control

End | f

Next n
hp = ct / 8 ' Calcul ate byte count
If ct And 7 Then

hp = hp + 1

End |f
MB. AutoParse(0) = hp ' Set byte count
MB. AutoParse(1) = bits ' Set data array

MB. UserSendAutoParse addr, cnd ' Send the reply
MB. AsyncButton = RTHi dden. hWwhd ' Reset wat cher

End Sub

The example code is quite simple. The form’s Load method initializes the serial port watcher so
that any incoming command frame will cause the RTHi dden_Cl i ck event handler to start.

The event handler begins by retrieving the incoming command with the Recei veAut oPar se
method. If the command is not Read Output Status or the address is not 17, the handler resets the
watcher and exits.

Next, the handler reads the starting coil number and coil count. In a real application, the starting
coil number should have some effect on the data being returned with the reply; the example always
returns the same data.

The handler creates an array of pattern data of the correct size, then calculates the byte count (the
first parameter in the reply). It sets the Aut oPar se property array elements to generate the
correct reply, then sends the reply.

Once the reply is on its way, the handler re-enables the serial port watcher.

13

MODBUS Driver ActiveX Control
Variants

The MODBUS Driver ActiveX control makes extensive use of the OLE Variant data type. The major
reason for this is that there is no other standard way to safely pass arrays between the host application
and the control.

Variants can contain virtually any kind of data, including arrays. Since a Variant containing an array
provides information about the dimensions of the array, the control can avoid reading or writing
“past the end” of the array. This prevents a class of severe and irretrievable crashes (Illegal Page

Faults).

The Variant data type is not as familiar to programmers as more common types, such as strings and
integers. However, it is very versatile and well suited to passing data to and from the Driver ActiveX
control.

OLE provides standard ways to change the type of a Variant, to detect “empty” Variants, and so on.
For example, if you pass an “empty” Variant to the Driver’s ReadlnputRegisters method, the control
will automatically “fill” the Variant with an integer array containing the register values you’ve
requested.

Visual Basic supports the Variant type directly; simply Di ma variable As Var i ant . MFC includes
the CO eVari ant class, which is a simple wrapper of a Variant.

If your programming language supports ActiveX controls (OCXes), it must provide support for the
Variant data type. You should consult your language’s documentation for more information.

14

MODBUS Driver ActiveX Control
User Frame Example

This example is intended to demonstrate two of the MODBUS Driver ActiveX control’s more
advanced capabilities, incoming command processing and user command frames.

Note. You do nof need to use the Receive or User commands to issue and receive standard
MODBUS commands. Use the dedicated methods for this.

For this example, let’s assume that we need to write an application that will let a PC pass
information to a large plant-wide control system, such as a Honeywell TDC 3000. The PC will act

as an operator terminal that allows plant personnel to change recipe variables for a process.

The PC will maintain a set of recipe variables that can be altered by the program’s operator; the
TDC will retrieve these values and use them to operate the process it controls.

Rather than trying to write the recipes into the controller, we’ve decided to let the TDC poll the PC
for recipe values at its own convenience. This makes the operator terminal program look like any
other device under the TDC’s control.

To do this, we’ll need to accept requests for recipe values from the TDC and send back properly
formatted replies. Further, our program should only accept and reply to commands it “understands”
that have been sent to its assigned address.

Let’s set some parameters. We’ll say that the PC has the MODBUS address 27, and that the values
the TDC will retrieve are “stored” in registers 34040 through 34060. The TDC will be programmed
to request these registers from the PC at a regular interval and incorporate the values into the process
control logic.

The TDC will use the MODBUS command Read Input Registers (function 4) to retrieve the recipe
values from the PC, so we need to “listen” for this command. The Read Input Registers command is
formatted as follows in the MODBUS protocol specification:

MODBUS address 1 byte
Function number 1 byte = 4
Starting Register address 1 word
Register count 7 1 word

The reply message looks like this:

MODBUS address 1 byte
Function number 1 byte = 4
Byte count 1 byte
Data values n words

Here’s the code fragment that will handle the data requests from the TDC:

Dimaddr As Integer, cnd As Integer, clen As Integer
Dimstat As Integer, startReg As Long
Dimnregs As Integer, n As Integer, subsc As |nteger

Whi |l e Not cancel Fl ag
15

MODBUS Driver ActiveX Control

DoEvent s
stat = MB. Receive(addr, cnd, clen, 100)

' See if this is a command we shoul d process
If stat = 0 And addr = 27 And cnmd = 4 Then

' Retrieve the starting address

MB. Recei veGet | nt eger addr

' addr is a signed integer, so convert to a |ong
' VB has no unsigned 16-bit integer..
I f addr >= 0 Then
start Reg = addr
El se
start Reg = &H10000& + addr
End | f

' Read the nunber of registers requested
MB. Recei veCet | nt eger nregs

" Is this a legal register range?

If startReg < 34040 O startReg + nregs > 34060 Then

" No, send back Error Frane 2, |llegal Data Address
' Error frane is function nunber or 80H

MB. Userlnit 27, &80 O 4

' Error code 2

MB. User AddByt e 2

Send the code...
I f MB.UserSend() <> 0 Then
MsgBox "Error sending error: " +
MB. LastErrorString(), _
vbOKOnly or vbExclamation, "Data Poll™
End | f
El se
' Request is legal, send data
Begin by setting up
MB. Userlnit 27, 4

' Add byte count
MB. User AddByte nregs * 2

Figure out offset into value array
subsc = startReg — 34040

For n = 1 To nregs

' Add a value fromthe master array

MB. User AddI nt eger Regi st er Val ues(subsc)

" Next subscript
subsc = subsc + 1
Next n

Send t he val ues. .
If MB.UserSend() <> 0 Then
MsgBox "Error sending val ues: "
+ MB. LastErrorString(), _
vbOKOnly or vbExcl anation, "Data Poll"

16

MODBUS Driver ActiveX Control
End If

Legal register range
End | f

Command we shoul d answer
End | f

"Li stening" |oop
Wend

This example code fragment makes several assumptions:
» The variable cancel Fl ag will be set to True elsewhere in the program when the “listening”
loop is to exit.

» The recipe values are stored in an array called Reci peVal ues.

e There is an instance of the MODBUS Driver ActiveX control called MB on the current form.

The code in this example should be fairly easy to understand. Basically, there is a main loop that
waits for incoming commands until the cancel Fl ag variable becomes True. In order to allow the
application’s user interface to continue to update, the loop waits only 100 milliseconds (1/10 second)
and executes a DOEvent s call with every iteration.

If a command is received, the code checks to see if it is addressed to the PC. It also checks to make
sure the command is Read Input Registers (the only MODBUS command we are supporting) and that
the registers requested fall inside the range that we have values for, that is, 34040 to 34060.

Assuming the incoming command passes all these tests, the code constructs an outgoing reply in the
correct format and sends it.

17

MODBUS Driver ActiveX Control
Properties

Understanding Properties

The MODBUS Driver ActiveX control’s properties act like member variables in most languages. You
can assign values to them or assign their values to other variables.

For example, the Visual Basic statement:
control . BaudRate = 7
will set the communications baud rate to 9600 (7 is the rate code for 9600 baud).
By the same token, the statement:
intvar = control.BaudRat e
will assign the rate code for the current communications speed to the integer variable i nt var .
Properties can have several attributes:

» Type. The property variable’s type, such as integer or string.

* Design Time. The property is available when you are designing your application. The exact
meaning of “design time” and “run time” varies somewhat depending on your development
language. In Visual Basic, “design time” is when the application is stopped and the tool palette
is presented.

* Run Time. The property is available when the application is running.

* Read-only. You cannot assign new values to read-only properties. You can only read their
values.

» Persistent. Persistent properties are stored with the Driver ActiveX control by the host
environment. That is, their values are maintained from session to session.

Property Summary
Here are the MODBUS ActiveX control’s Properties:
Serial Port Parameters

These properties control the operation of the serial port when communicating with the MODBUS
device. Changing one of these parameters will affect the zexs command sent by the control.

Note. There is no way of adjusting the size of the data word; MODBUS RTU mode requires

8 bit words.
BaudRate Sets or retrieves the communications rate.
CommPort Sets or retrieves the current communications port.

18

MODBUS Driver ActiveX Control

Parity Sets or retrieves the current Parity setting.
StopBits Sets or retrieves the Stop Bits setting
Timeouts

The Timeout properties control when the Driver determines that an incoming MODBUS frame has
completed and how long the control will wait for an incoming message to begin.

CharTimeout Sets or retrieves the character timeout, which tells the Driver when an incoming frame has
been completely received.

FrameTimeout Sets or retrieves the frame timeout, the length of time the Driver waits for an incoming
MODBUS message to begin arriving.

Communications Tracing

Communications tracing allows you to track every byte sent or received by the Driver ActiveX
control.

TraceEnable Turn communications tracing on or off.

TraceFile Specify the output text file that is to receive the communications tracing information.

User Frames and Asynchronous Operation

AsyncButton Designates a button to be “clicked” by the asynchronous notification system when an
incoming frame arrives.

AsyncHandshake Enables or disables changes in the serial port RT'S signal during asynchronous
receiving.

AsyncMessage Specifies the Windows message used to signal incoming command frames when in

asynchronous mode.

AutoParse Property array used to interpret incoming frames and construct replies.
Other Properties

IOMapping Sets or retrieves the I/O Mapping mode.

LastError Retrieves the last error code encountered by the Driver.

LastErrorString Translate the last error code (or any error code) to a string.

AsyncButton Property

Long Integer Property M Run Time

ol dHandl e = control . AsyncButton
control . AsyncButton = newHandl e

> Intended for advanced users.
This property allows you to respond asynchronously to incoming commands.

Using the Receive method in the traditional way, your program would have to “poll” for incoming

19

MODBUS Driver ActiveX Control

commands. That is, you would have to set up a loop that would call the Receive method repeatedly
until an incoming command was detected.

This is obviously an inefficient approach, especially in a GUI application. In languages like Visual
Basic, the application will become unresponsive if you put the program into a tight loop on the
Recei ve method. Languages that don’t support multithreading can have serious difficulties
handling this sort of situation.

The AsyncBut t on property is designed to permit your application to invoke the Receive method
only when you know that a command is actually arriving. Until a command is detected, your program
can go about its business.

The AsyncBut t on property is intended for languages such as Visual Basic and Delphi that have no
inherent support for multithreading and no easy way to accept arbitrary messages from the operating
system.

Technically, AsyncBut t on sets up a worker thread that watches the serial port. When an incoming
command is detected, this thread sends a message to your application that has the effect of clicking a
button on your program’s form. When your application gets this message, it’s time to invoke the
Receive or ReceiveAutoParse method to accept and reply to an incoming command.

During the interval when no commands are arriving, the MODBUS ActiveX control’s watcher thread
consumes no CPU time. Using AsyncBut t on is a very efficient way to create an application that
operates as a MODBUS slave, especially when coupled with the ReceiveAutoParse and
UserSendAutoParse methods.

To use AsyncBut t on, begin by creating a button on your application’s form, then make the button
invisible. You don’t want your users to be able to see the button because only the MODBUS ActiveX
control will “click” it. In Visual Basic, you make a button invisible by setting its Vi Si bl e property
to Fal se.

Within your program, when you are ready to start watching for incoming commands, set your
MODBUS ActiveX control's AsyncBut t on property to the invisible button’s window handle. The
window handle is an arbitrary 32-bit integer that has meaning only to Windows. In Visual Basic, this
handle is exposed via the button’s h\WAd property; Delphi uses the Handl e property.

As soon as your program sets the ASyncBut t on property to the button’s window handle, the
MODBUS ActiveX control will begin watching for incoming commands. When an incoming
command is detected, the control will “click” the invisible button.

Your program will handle incoming commands using code attached to the invisible button’s “click”
event. Within this code, you might, for example, retrieve the command using the
Recei veAut oPar se method, then transmit a reply using the User SendAut oPar se method.

Note. The AsyncBut t on property must be reset after each incoming command
notification. This is to protect your program from having the invisible button’s click
event handler called during processing of a command.

To re-enable the serial port watcher, simply reset the ASyncBut t on property to the invisible
button’s window handle, just as you did initially.

» To disable the serial port watcher, set the AsyncBut t on property to zero.

20

MODBUS Driver ActiveX Control

> See also AutoParse Property Array, ReceiveAutoParse, UserSendAutoParse, AsyncMessage,
AsyncHandshake

AsyncHandshake Property

Boolean Property M Design Time M Run Time M Persistent

control . AsyncHandshake = True (default) or Fal se

» Intended for advanced users.

When operating in asynchronous mode, the MODBUS ActiveX control normally provides the signals
needed for hardware handshaking. When an incoming frame has been detected, the control lowers
the RTS signal until your code returns to the asynchronous listening mode.

When used with a device that supports hardware handshaking, this feature permits you to avoid
receiving additional incoming frames while you are processing a frame. The RTS signal “tracks” your
application’s handling of the incoming command: it will be true when you are ready to receive an
incoming frame and false while you are processing a frame.

This type of handshaking will have no effect on MODBUS devices that don’t support RT'S/CTS
handshaking. In fact, many MODBUS devices are connected using a three-wire (transmit data, receive

data, ground) cable.

However, if you are writing a program that operates as a MODBUS slave, you may find it worthwhile
to investigate hardware handshaking. This will enable you to process commands more reliably,
especially if your application performs extensive processing or screen updates in response to incoming
commands.

If you set the AsyncHandshake property to False, the serial port’s RT'S signal will always be true.
> See also AsyncButton, Slave / AutoParse Example

AsyncMessage Property

Long Integer Property M Design Time M Run Time M Persistent

control . AsyncMessage = W ndows Message Nunber
» Intended for advanced users.

This property determines what Windows message the MODBUS Driver ActiveX control sends when
it wishes to notify your application that an incoming command frame has arrived. It applies only
when you have set up asynchronous “listening” with the AsyncButton property.

By default, the control uses the message VW COMVAND. It reads the control ID of the button passed
to AsyncBut t on property and uses that as the command number in the message. This approach
should work for all Microsoft languages.

21

MODBUS Driver ActiveX Control

You should only need to change this property if you are using a non-Microsoft language that doesn’t
interpret WM_COMMAND properly. Unfortunately, Borland Delphi is such a language. It does not obey
this standard Windows message. For Delphi, you should use WW_LBUTTONDOV.

You could also change this message if you wish to use a private application-specific message that you
have defined. Advanced programmers who use languages like C++ frequently use this technique.

The Driver ActiveX handles messages in the following way:

* VWM _COMVAND. The default message. When this message is set, the ActiveX control reads the
Control ID of the button passed to the AsyncBut t on property. When an incoming frame is
detected, the Driver ActiveX sends a WM_COMVAND message to the indicated target window
with the command ID equal to the Control ID retrieved previously. Use with Microsoft
languages.

WM LBUTTONDOWN. This setting causes the Driver ActiveX to simulate a “mouse click” on
the control specified with the AsyncBut t on property. When an incoming frame is detected,
the Driver sends a WM_LBUTTONDOAN/ WM_LBUTTONUP pair to the target control.

Note. The WM _LBUTTONDOWN mode is highly inefficient. In this mode, the Driver
ActiveX must send two messages to your application for each incoming frame.
Also, the WM_LBUTTONDOWN message is transmitted with SendMessage
rather than the more efficient Post Message. This mode is provided only to
support Borland Delphi users; Delphi is not responsive enough to handle more

traditional methods like the default (posted WW_COMVAND).

* Other messages. For all other messages, the Driver ActiveX will simply post the specified
message to the control set using AsyncBut t on. This approach would typically be used when
your application wishes to use a private user-defined message for incoming frame notification.

> See also AsyncButton, Slave / AutoParse Example

AutoParse Property

Integer Property M Run Time

ol dval ue = control . Aut oPar se(i ndex)
control . Aut oPar se(i ndex) = newVal ue
This is a property array is designed to hold several parameters of varying types. The exact meaning of

each parameter depends on the MODBUS command being processed; there is a table below that
describes the parameters in detail.

Assuming ol dVal ue and newVal ue are both Variants or Variant-compatible types, you can
retrieve or assign values to or from the property array using the syntax above. The index variable is a
16-bit integer that can range from O to 4, allowing five parameters in total.

Note that not all MODBUS commands use all five parameters. Many commands need only one or two
parameters.

22

MODBUS Driver ActiveX Control

Both the Recei veAut oPar se and User SendAut oPar se methods use the Aut oPar se array.
The Recei veAut oPar se method will decode incoming command frames and put the
information that it finds into elements of the Aut oPar se property array. The

User SendAut oPar se method uses information from the property array to construct replies to
incoming commands.

The exact use of these commands is demonstrated and explained in the Slave Mode example.

Note. The | OVAppi Ng property affects register addresses in the Aut oPar se property
array. If | OvVappi ng is Tr ue, the MODBUS Driver ActiveX control will
automatically translate register addresses.

23

MODBUS Driver ActiveX Control

AutoParse parameter table

This table documents the Aut oPar se parameter configuration for all the MODBUS commands supported by the
Recei veAut oPar se and User SendAut oPar se methods. Compare the table to the Read Output Status example above to help

understand it.

Receiving Replying
Command Number Element Type Description Element Type Description
Read Output Status 1 0 Integer Starting coil number* 0 Integer Byte count (number of coils
divided by 8, rounded up)
1 Integer Number of coils to read 1 Integer Array Coil values, packed into 16-bit
words
Read Input Status 2 0 Integer Starting coil number* 0 Integer Byte count (number of coils
divided by 8, rounded up)
1 Integer Number of coils to read 1 Integer Array Coil values, packed into 16-bit
words
Read Output Registers 3 0 Integer Starting register number* 0 Integer Byte count (twice the number
of registers)
1 Integer Number of registers to read 1 Integer Array Register values
Read Input Registers 4 0 Integer Starting register number* 0 Integer Byte count (twice the number
of registers)
1 Integer Number of registers to read 1 Integer Array Register values
Force Single Coilt 5 0 Integer Coil address* 0 Integer Coil address
1 Integer New value 1 Integer New value
Write Single Registert 6 0 Integer Register address* 0 Integer Register address
1 Integer New value 1 Integer New value
Read Exception Status 7 - - - 0 Integer Exception status coil value
Loopback Test 8 0 Integer Diagnostic code 0 Integer Diagnostic data

25

MODBUS Driver ActiveX Control

Fetch Communications 11 - - - 0 Integer Status
Event Counter
1 Integer Event count
Fetch Communications 12 - - - 0 Integer Byte count
Event Log
1 Integer Status
2 Integer Event count
3 Integer Message count
4 Integer Array Event bytes
Force Multiple Coils 15 0 Integer Starting coil address* 0 Integer Starting coil address*
1 Integer Number of coils to write 1 Integer Number of coils written
2 Integer Array Coil values to write, packed
into 16-bit integers
Write Multiple Registers 16 0 Integer Starting register address* 0 Integer Starting coil address*
1 Integer Number of registers to write 1 Integer Number of registers written
2 Integer Byte count (twice the number
of registers)
3 Integer Array Register values
Report Slave ID 17 - - - 0 Integer Byte count for device-
dependent data
1 Integer Slave ID
2 Integer Run Light
3 Integer Array Device dependent data
Notes:

t The command’s reply is the same as the incoming frame.

* Register address will be translated if | OVappi ng is Tr ue.

26

MODBUS Driver ActiveX Control

Baud Rate Property

Integer Property M Design Time M Run Time M Persistent

control . BaudRat e = Rate Code

Sets or retrieves the current baud rate used for communications with the MODBUS device. The Rate
Code must be one of the integer values below:

Rate Code Baud Rate

0 110
1 150
2 300
3 600
4 1200
5 2400
6 4800
7 9600
8 19200
9 38400
10 57600
11 115200
Char Timeout Property
Long Integer Property M Design Time M Run Time M Persistent
control . CharTineout = Timeout in MIIiseconds

The MODBUS protocol has no explicit framing, that is, it does not have codes that indicate when a
message begins or ends. Instead, the protocol relies on time. Specifically, the protocol says that the
end of each message is marked by a “silent” period lasting for at least the length of time required to
transmit two and one half characters at the current baud rate.

The CharTimeout property tells the Driver how long it should wait before determining that an
incoming message is complete. In most cases, the default value of 50 milliseconds should be
adequate.

Note. This is a 32-bit quantity.

However, if you frequently have problems receiving replies from the MODBUS device, or if you are
communicating at low baud rates, you may need to increase this value.

Note that the CharTimeout value is only used once an incoming message has started to arrive. The
FrameTimeout property determines how long the Driver will wait for an incoming message to begin.

27

MODBUS Driver ActiveX Control

Reducing the CharTimeout value may provide increased throughput if you are trying to sample at the
maximum possible rate. However, values below 50 milliseconds may cause erratic operation on some
computers.

> See also Frame Timeout

Comm Port Property

Integer Property M Design Time M Run Time M Persistent

control . CommPort = Port Nunber

Sets or retrieves the current port used for communications with the MODBUS device. The port
number must be one of the integer values below:

Port Number Port Constant
0 COM1 nbdCom 1
1 COM2 nbdCom 2
2 COM3 nbdCom 3
3 COM4 nbdCom 4
4 COM5 nbdCom 5
5 COM6 nbdCom 6
6 COM7 nbdCom 7
7 COMS nbdCom 8

The number of communications ports supported by your system will vary. Many computers don’t

support COM ports beyond number 4.

Frame Timeout Property

Long Integer Property M Design Time M Run Time M Persistent

control . FrameTi neout = Tineout in MII|iseconds

This property determines how long the control waits for an incoming MODBUS message to begin,
either in response to an outgoing command or while “listening” for an incoming command.

When you transmit a MODBUS command using any of the Driver’s command methods, it will wait
for a reply to begin arriving for the time specified by the FrameTimeout property. Once the reply
begins to arrive, the control uses the CharTimeout property to detect when the incoming message is
complete.

If no incoming message begins arriving during the time specified by the FrameTimeout property, the
control returns a Timeout Error.

» See also Char Timeout

28

MODBUS Driver ActiveX Control

1/0 Mapping Property

Boolean Property ™ Design Time M Run Time M Persistent

control .1 Ovapping = { True | False }

Normally, the Driver ActiveX control “maps” the Register and Coil addresses that you pass to
conform to the Protocol’s specifications. For example, if you refer to Holding Register 40127, the
actual binary address transmitted by the Driver will be 126, as defined by the Protocol.

However, if you are not working with Gould equipment, or if you need to control the actual
transmitted addresses, you can disable address mapping with this command.

I/0O Mapping is enabled by default. To disable it, set the IOMapping property to False.

Note. Ifyou disable I/O Mapping, the Driver ActiveX control will perform no address range
checking. When 1/0O Mapping is disabled, you are responsible for supplying register
and point addresses exactly as the MODBUS device will receive them.

Key Port Property

Integer Property M Design Time M Run Time M Persistent

control . KeyPort = Port Nunber

For copies of the Driver ActiveX control that are protected by a Hardware Lock, this command
changes the printer port that the Driver searches for the hardware key. The default is 0, which selects
LPT1. Use one of the port number codes below:

Port Number Port
0 LPT1
1 LPT2
2 LPT3

The Driver will periodically check for the presence of the Hardware Lock on the port indicated by
the KeyPort property. If the key is not found, the Driver will return an error code of -4, “Hardware
Key not found.”

Note. This property is not used for OEM versions of the Driver.

Last Error Property

Integer Property M Run Time

I ntegerVariable = control.LastError

Retrieves or sets the integer number of the last error reported by the Driver ActiveX control or zero if
no error occurred during the last operation.

29

MODBUS Driver ActiveX Control

Last Error String Property

Integer Property M Run Time M Read Only

StringVariable = control.LastErrorString()
or
StringVariable = control.LastErrorString(errorNunber)

Retrieves the last error reported by the Driver ActiveX control in string format. If you supply the
optional argument er r or Nunber , the Driver will return the string equivalent of the specified error
number.

Parity Property

Integer Property M Design Time M Run Time M Persistent

control .Parity = Parity Code

This property determines whether any parity bits are used during communications with the MODBUS
device. The Parity Code must be one of the values in the table below. The default value of 0 (No

Parity) should be used in most situations.

Parity Code Port Parity Constant
0 None nbdParity_None
1 Odd nmbdParity_Qdd
2 Even nbdParity_Even
3 Mark nbdParity_Mark
4 Space nmbdParity_Space

Stop Bits Property

Integer Property M Design Time ™ Run Time M Persistent

control . StopBits = Stop Bits Code

This property determines the number of stop bits that are used during communications with the
MODBUS device. The Stop Bits Code must be one of the values in the table below. The default value
of 0 (1 stop bit) should be used in most situations.

Stop Bits Code Stop Bits Constant
0 1 nbdSt ops_1
1 1.5 nmbdSt ops_15
2 2 nbdSt ops_2

30

MODBUS Driver ActiveX Control

Trace Enable Property

Boolean Property M Run Time

control . TraceEnable = { True | False }
This property enables or disables communications tracing, which is disabled by default.

Communications tracing allows you to see all the data that passes through the communications link
in both directions. It can be very useful for diagnosing difficult communications problems.

When communications tracing is enabled, all bytes that are sent and received are recorded to the
ASCII text file specified in the TraceFile property. You can enable and disable tracing repeatedly as
needed during a session. For example, you can set the TraceEnable property to True just before
sending a MODBUS command that isn’t working properly, then set the TraceEnable property back to
False before sending other commands.

Note. The TraceFile property must be set to a legal filename before communications tracing
will work. Your program must also explicitly set the TraceEnable property to True
before tracing will begin; the TraceEnable property is not stored from session to
session.

Tip. You can annotate the Trace File contents using the TraceString method.

» See also TraceFile Property, TraceString

Trace File Property

String Property M Design Time M Run Time M Persistent

control . TraceFile = "Legal filenane.txt"

The TraceFile property specifies the output file that the Driver ActiveX control will use to save
communications tracing output. Once you have set this file and enabled tracing by setting the
TraceEnable property to True, the Driver will “print” every byte that passes through the
communications port under its control to the specified file.

Once your program exits, you can examine this file to see what exactly was sent and received for every
MODBUS command issued by your program. The file will contain ASCII text in a simple tabular
format.

Tip. You can annotate the Trace File contents using the TraceString method.

» See also TraceEnable Property, TraceString

31

MODBUS Driver ActiveX Control
Methods

Understanding Methods

Methods act like subroutines and functions. Invoking a MODBUS Driver ActiveX control method is
very like calling a function within your own application. For example, the Visual Basic statement:

status = control. Readl nput Regi sters(14, 30014, 5, v)

sends a Read Input Registers command to the MODBUS device whose address is 14. The command
frame will request 5 registers starting at register 30014. The register values will be stored in the
Variant v, and the error code, if any, will be returned in the variable St at us.

Methods can have several attributes:

* Return type. This specifies the type of the value returned by the method. For communications
methods, this is always an integer.

* Broadcast. Some MODBUS commands allow you to transmit in “broadcast” mode. This means
that all connected devices will receive and act on the command. Note that the official MODBUS
protocol specifies that only a handful of commands permit broadcast mode.

e Command number. Methods that transmit MODBUS commands show the decimal command
number that will actually be sent. Some MODBUS devices specify the commands they accept by
number rather than by name.

Note. In the method descriptions below, variables that will be modified by the MODBUS
Driver ActiveX control appear in under | i ned type.

Conversion Functions

Convenience functions for manipulating data:

ArrayToWord Converts an array of 16 integers to a 16-bit word.
WordToArray Converts a 16-bit word to a 16-element integer array.
Diagnostics

Detecting the state of the MODBUS device and discovering error conditions:

FetchEventCounter Retrieves the count of successfully executed MODBUS commands.
FetchEventlLog Retrieves a log of information about all MODBUS transactions.
Loopback Test communications link and/or retrieve diagnostic information.
ReadExceptionStatus Retrieves the state of the device’s special status coils.
ReportSlavelD Determines the slave device’s type and run state.
ReleaseCommPort Terminates the Driver’s control of any serial port it is currently
using.
TraceString Wirites a text annotation to the Communications Tracing file.

32

MODBUS Driver ActiveX Control
Receiving and Interpreting Commands

Accepting MODBUS commands from a remote device:

Receive Waits for an incoming MODBUS command frame.
ReceiveAutoParse Wait for and interpret an incoming MODBUS command frame.
ReceiveGetByte Extract a byte or bytes from the incoming command.
ReceiveGetinteger Extract an integer or integers from the incoming command.

Reading Values

Obtaining process data from the MODBUS device:

ReadGeneralReference Read data from “extended memory” files.
ReadInputRegisters Retrieve values from one or more input registers.
ReadInputStatus Read the status of discrete inputs.

ReadOutputRegisters Read values from one or more output (holding) registers.
ReadOutputStatus Read the status of discrete outputs (coils).

Sending User Commands

Creating and sending commands not directly supported by the MODBUS Driver ActiveX control:

UserAddByte Adds a byte or bytes to a User command being constructed.
UserAddinteger Adds an integer or integers to a User command being constructed.
Userlnit Sets up the Driver ActiveX control for transmission of a user
command.
UserSend Transmits a user command frame.
UserSendAutoParse Constructs and transmits a reply to an incoming MODBUS
command.
Writing Values
Transmitting values to registers and points on the MODBUS device:
ForceCoil Wirites a value to a single coil.
ForceMultipleCoils Writes values to a series of consecutive coils.
WriteGeneralReference Wirites data to “extended memory” files
WriteMultipleRegisters Wirites new values to a series of consecutive registers.
WriteRegister Wirites a new value to a single register.

Optional argumentsin C

C, C++, and C-like languages support “optional” OLE parameters only indirectly. You cannot simply
omit an optional parameter and expect the program to work properly.

Technically, optional OLE parameters are passed as const FAR VARI ANT &, that is, a reference

to a Variant. You must supply a Variant whether you want to use the parameter or not.

33

MODBUS Driver ActiveX Control

To indicate that an optional parameter is omitted, you should set the Variant’s type to VT_EMPTY
or VT_ERRCOR. Officially, Microsoft recommends, “If an optional argument to an Automation
method is left blank, do not pass a VARI ANT of type VT_EMPTY. Instead, pass a VARI ANT of type
VT_ERROR with a value of DI SP_E_PARAMNOTFOUND (0x80020004L) .”

Array To Word Method

(no return) Method

control . ArrayTowrd Val ues, Wrd

Parameter Type Usage
Val ues Integer Array Bit values to combine. Must have at least 16 elements.
Wor d Integer Variable to contain combined bits.

Combines the bits in the input array Val ues into the single 16-bit integer Wor d. Element 0 of
Val ues becomes bit 0 of WOTI d; element 15 of Val ues becomes bit 15 of Wor d.

Note. Any non-zero element of Val ues will become a 1 in the output word.

Fetch Event Counter Method

Integer Method M Broadcast Command 11

Status = control. FetchEvent Count er (Addr ess, Busy, Events)

Parameter Type Usage

Addr ess Integer Address of the MODBUS device that is to receive the command. Use O for broadcast
mode (addressed to all devices).

Busy Boolean Flag indicates that a previous command is still being processed.

Events Integer Count of MODBUS commands successfully processed by the device.

Retrieves the MODBUS device’s Busy flag and Event counter. You can use the Event counter to tell
when commands have completed successfully. This is a good way to detect when commands that
require substantial processing time have finished.

Returns O for success or an error code.

Fetch Event Log Method

Integer Method M Broadcast Command 12

Status = control. FetchEvent Log(Address, Busy, EventC, MgCQ, Log)

Parameter Type Usage
Addr ess Integer Address of the MODBUS device that is to receive the command. Use 0 for
| FOPSRh DRGSR DR Ph DU EVISR | [ih DRSS Y

34

MODBUS Driver ActiveX Control

broadcast mode (addressed to all devices).

Busy Boolean Flag indicates that a previous command is still being processed.
Event O Integer Count of MODBUS commands successfully processed by the device.
MsgCt Integer Number of events in the Event Log.

Log Integer Array Contents of the event log, one byte per element.

Retrieves a MODBUS device’s Event Log. Each entry in the log will occupy one element of the Log
array.

The exact meaning of these entries will depend on the device. Usually, but not always, these are byte-
wide bitmaps.

Returns O for success or an error code.

Force Coil Method

Integer Method M Broadcast Command 05

Status = control. ForceCoil (Address, Coil, Val ue)

Parameter Type Usage

Addr ess Integer Address of the MODBUS device that is to receive the command. Use 0 for broadcast
mode (addressed to all devices).

Coi | Integer Address of the coil to force (1 —9999).

Val ue Boolean Value to apply to coil.

Changes an output to a specific value.

Returns O for success or an error code.

Force Multiple Coils Method

Integer Method M Broadcast Command 15

Status = control. ForceMiltipl eCoil s(Address, Start, Count, Val ues)

Parameter Type Usage

Addr ess Integer Address of the MODBUS device that is to receive the command. Use 0 for
broadcast mode (addressed to all devices).

Start Integer Address of the first coil to force (1 —9999).

Count Integer Number of coils to force.

Val ues Integer Array Values to apply to coils.

Changes a group of outputs to specific values. The new values are supplied to the method packed
into 16-bit words. Bit 0 of Val ues(0) will supply the value for St art; Bit 1 will set Start +1,
and so on. Bit 0 of Val ues(1) will set St art + 16. The ArrayToWord method can be very handy
for building the Val ues array.

35

MODBUS Driver ActiveX Control
Returns O for success or an error code.

» See also ArrayToWord

Loopback Method

Integer Method M Broadcast Command 08

Status = control.Loopback(Address, Di agCode, | nfo)

Parameter Type Usage

Addr ess Integer Address of the MODBUS device that is to receive the command. Use 0 for broadcast
mode (addressed to all devices).

D agCode Integer Code indicating diagnostic to run.

Info Integer Parameter value for diagnostic.

Runs a diagnostic on the MODBUS device. The Di agCode parameter specifies which diagnostic to
run; the | nf 0 parameter may be used by some diagnostic operations and ignored by others. Some
diagnostic functions will return information via the | nf 0 parameter.

The specific diagnostics available vary from device to device, but diagnostic 0, the Loopback test, is
always implemented. This test simply sends back the | nf 0 value unchanged.

Returns O for success or an error code.

Read Exception Status Method

Integer Method Command 07

Status = control.ReadExcepti onSt at us(Address, Val ue)

Parameter Type Usage
Addr ess Integer Address of the MODBUS device that is to receive the command.
Val ue Integer Returns the contents of the Exception register.

Reads the MODBUS device’s Exception register. Depending on the device, this bits in this register
may reflect error or status conditions. On Programmable Logic Controllers, this register is usually
linked to certain specific special coils.

Returns O for success or an error code.

Read General Reference Method

Integer Method Command 20

36

MODBUS Driver ActiveX Control

Status = control.ReadGener al Ref erence(Addr ess,
Ref Type, FileNo, Start, Count, Val ues)

Parameter Type Usage

Addr ess Integer Address of the MODBUS device that is to receive the command.

Ref Type Integer The reference type.

Fi | eNo Integer The number of the file to read.

Start Integer Address of the first register within the file to read.

Count Integer Number of registers to read. Limited to 120 or less on most MODBUS devices.
Val ues Integer Array Returns the requested registers.

The Read General Reference command provides a way to retrieve registers in large blocks. It was
originally designed to allow access to optional “extended” memory. Contemporary MODBUS devices
use this command (and its companion, Write General Reference) for a wide variety of different
functions. Consult your device’s documentation for details.

Returns O for success or an error code.

Read Input Registers Method

Integer Method Command 04

Status = control. Readl nput Regi sters(Address, Start, Count, Val ues)

Parameter Type Usage

Addr ess Integer Address of the MODBUS device that is to receive the command.
Start Integer The first register to read (30001 — 39999).

Count Integer Number of registers to read. Limited to 120 or less on most devices.
Val ues Integer Array Returns the requested registers.

Reads the contents of input registers.
Returns O for success or an error code.

» For an example, see “Sending MODBUS Commands”

Read Input Status Method

Integer Method Command 02

Status = control. Readl nput St at us(Address, Start, Count, Val ues)

Parameter Type Usage

Addr ess Integer Address of the MODBUS device that is to receive the command.
Start Integer The first input to read (10001 — 19999).

Count Integer Number of inputs to read. Limited to 2000 or less on most devices.

37

MODBUS Driver ActiveX Control

Val ues Integer Array Returns the requested inputs.

Reads the status of discrete inputs. The input states are returned packed into 16-bit integers. Bit 0
(the least significant bit) of Val ues(0) will contain the state of the input designated by St art ;
Bit 1 will contain the state of (St art + 1), and so on. You can use the WordToArray method to
break the elements of Values into individual bits if that is more convenient.

Returns O for success or an error code.

» See also WordToArray

Read Output Registers Method

Integer Method Command 03

Status = control.ReadQut put Regi st ers(Address, Start, Count, Val ues)

Parameter Type Usage

Addr ess Integer Address of the MODBUS device that is to receive the command.
Start Integer The first register to read (40001 — 49999).

Count Integer Number of registers to read. Limited to 120 or less on most devices.
Val ues Integer Array Returns the requested registers.

This command reads the current contents of output (holding) registers.

Returns O for success or an error code.

Read Output Status Method

Integer Method Command 01

Status = control.ReadQut put St at us(Address, Start, Count, Val ues)

Parameter Type Usage

Addr ess Integer Address of the MODBUS device that is to receive the command.
Start Integer The first output to read (1 — 9999).

Count Integer Number of outputs to read. Limited to 2000 or less on most devices.
Val ues Integer Array Returns the requested outputs.

Reads the status of discrete outputs (coils). The output states are returned packed into 16-bit
integers. Bit O (the least significant bit) of Val ues(0) will contain the state of the output
designated by St ar t ; Bit 1 will contain the state of (St art + 1), and so on. You can use the
WordToArray method to break the elements of Values into individual bits if that is more convenient.

Returns O for success or an error code.

» See also WordToArray

38

MODBUS Driver ActiveX Control

Receive Method

Integer Method

Status = control. Recei ve(Address, Conmand, Length, Wait)

Parameter Type Usage

Addr ess Integer Returns the address the incoming command was sent to.

Conmmand Integer The MODBUS command number in the incoming message.

Lengt h Integer Total length in bytes of the incoming command.

Vai t Long Integer Optional length of time in milliseconds to wait for an incoming command.

> Intended for advanced users.
This method allows your application to receive commands from other MODBUS devices.

Most applications that use the MODBUS driver will act as “masters.” They will send commands to
MODBUS devices using methods like ReadInputStatus that automatically wait for and process the
error and information frame sent back by the “slave” device.

However, you can use the Receive method to cause your application to act as a MODBUS slave. The
Receive method waits for a correctly formatted MODBUS command. If such a command arrives, the
Receive method will return its MODBUS address, command number, and frame length in the variables
listed above. If no MODBUS command arrives within the time allotted, the Receive method will
return a Timeout error.

By default, the Receive method waits for the length of time specified in the FrameTimeout property.
You can choose another wait interval by specifying the optional Wait parameter.

Note. You do nof need to use the Receive method to obtain results from “master” methods
like ReadInputStatus. Use this method only if you want to wait for incoming
commands from another device or retrieve replies from a User command.

Once a command has arrived, you can check the Addr ess and Conmand variables to see if your
application should process the message. You can use the ReceiveGetByte and ReceiveGetinteger
methods to “break” the incoming message into parameters.

If the application needs to send a reply, it can employ the User methods.

Note. If the Receive method successfully captures an incoming frame, the “current position”
used by both ReceiveGetByte and ReceiveGetinteger will be set to the first byte of
user data in the frame (just after the MODBUS address and command numbers).

RCtllI'l’lS 0 fOI' SUCCESS Or an error COdC.
Receive method Technical Note

When you call the Receive method, the calling thread will block until a command is received or until
the allotted timeout elapses. This means no CPU time will be used, but it also means that the thread
will not respond to Windows messages. If you use your application’s main thread to call Receive, and
use a long timeout value, the application’s user interface won’t update until the Receive method
exits.

39

MODBUS Driver ActiveX Control

If your application is going to spend most of its time waiting for incoming commands, you may want
to place the code that calls the Receive method on an alternate thread, leaving your application’s

main thread to handle GUI updates.
If you are using a language like Visual Basic, which doesn’t directly permit multithreading, you may
want to use construct like this:

Wil e control. Recei ve(Address, Cnd, Length, 100) = nbdError_Ti nmeout
DoEvent s
Wend

Process the inconm ng comand
While this example considerably oversimplifies what would be done in a real application, it gives the
idea. This performs a GUI update (uses the VB DoEvent s command to process messages) every

tenth of a second (the Wi t value is 100 milliseconds). That will permit the application to be
responsive to the user while continuing to “listen carefully” for incoming MODBUS commands.

A future version of the Driver ActiveX control will support asynchronous notification of incoming
MODBUS commands, but this version supports only polled reception.

» See also ReceiveGetByte, ReceiveGetinteger

> See also “User Frame Example”

ReceiveAutoParse Method

Integer Method

status = control.Recei veAut oPar se(Command, Address, Wit)

Parameter Type Usage

Conmmand Integer The MODBUS command number in the incoming message.

Addr ess Integer Returns the address the incoming command was sent to.

Wai t Long Integer Optional length of time in milliseconds to wait for an incoming command.

» Intended for advanced users.

The Recei veAut oPar se method is an extension of the control’s standard Receive method. It
functions in the same general way as the Recei ve method, except that incoming frames are subject
to additional processing.

The optional Vi t Ti meout parameter has exactly the same effect as it does on the Recei ve
method. It tells the control how long to wait for an incoming command frame. If this parameter is
not supplied, the method will wait for length of time specified by the current value of the
FrameTimeout property.

The Command and Addr ess parameters, both 16-bit integers, describe the incoming frame if one
is received. After a successful receive operation, the Commrand variable will contain the frame’s
command number, and the Addr ess variable will contain the MODBUS node number that the
command was addressed to.

40

MODBUS Driver ActiveX Control

As always, the function’s return code (assigned to the variable St at us in this case) will be zero for a
successful operation or an error code otherwise.

If the control successfully receives a MODBUS command during execution of the
Recei veAut oPar se method, it will examine that command. The control has built-in “templates”
that tell it how to interpret the most popular commands.

These templates tell the control the construction of each MODBUS command. As an example, let’s
take the ReadQut put St at us command.

Oversimplifying a bit, at the binary level, a ReadQut put St at us command looks something like
this:

Sample Value (hex) Type Description

11 Byte Destination address

01 Byte Function code

0013 Word | Starting coil number
0025 Word | Number of coils to read

If this command were received by the Recei veAut oPar se method, the command parameter
would be set to 1 for Read Output Status, and the address parameter would be set to 17 (11 hex).

From this information, your application will know how to process the command. For example, if
your application has the address 17 decimal, you might process the command; otherwise, you might
ignore it. Once you decide to process the command, the function code 1 tells you that the remote
device sent the Read Output Status command. This would presumably tell your program what kind
of data to include in the reply.

To create a reply, your program will need to know what coils the remote device is requesting, and
how many. To get this information, you'll use the Aut oPar se property array.

The Recei veAut oPar se method uses its templates to examine incoming commands. The
template tells the method the number of parameters included in the command and the type of each
parameter. In our example (the Read Output Status command), there are two parameters: the
starting coil number, and the number of coils to read.

The Recei veAut oPar se method assigns each parameter in the incoming command frame to a
member of the Aut oPar se property array. In this case, Aut oPar se(0) would get the value 19
(13 Hex), which is the starting coil number. Aut oPar se(1) would get the value 37 (25 Hex), the
number of coils to read.

Recei veAut oPar se works the same way with all the commands that it has templates for: each
parameter in the incoming command is assigned to a successive element of the Aut oPar se property
array. This means that you can interpret any supported incoming command just by reading the
command number (which will tell you how to act on what you get) and by accessing elements of the
Aut oPar se property array.

* The AutoParse Received Parameters table shows what information appears in each member of
the AutoParse property array for each MODBUS command.

41

MODBUS Driver ActiveX Control

Obviously, you'll need to send a reply to the incoming command. To do that, you'll use the
User SendAut oPar se method.

> See also AutoParse Property Array, Slave / AutoParse Example, UserSend Auto Parse Method

Receive Get Byte Method

(no return) Method

control . Recei veGet Byt e Val ue, Count, Position

Parameter Type Usage

Val ue Integer Returns byte(s) from the incoming message.

Count Integer Optional. The number of bytes to retrieve. Defaults to 1.

Posi tion Integer Optional. Offset from the beginning of the frame. Defaults to the current position.

» Intended for advanced users.
Retrieves one or more bytes from an incoming MODBUS message captured by the Receive method.

Note. You must use the Receive method to capture an incoming command frame before using the
ReceiveGetByte method. If you call this method with no received frame in memory, the Driver
ActiveX control will throw an exception.

The ReceiveGetByte method (and its companion ReceiveGetInteger) allows you to step through a
received MODBUS command frame one parameter at a time. By default, if you supply neither a
Count nor a Posi ti on argument, the ReceiveGetByte method retrieves a single byte from the
“current” position and advances the “current” position by one byte.

The “current position” used by both ReceiveGetByte and ReceiveGetInteger starts at the first byte
of user data in the frame (just after the MODBUS address and command numbers).

If you supply a Count value greater than 1, Val ue will be returned as an integer array with one byte
from the incoming command in each element. Val ue(0) will contain the byte at the “current”
position, Val ue(1) the next byte, and so on, until Count bytes have been copied. When the
method returns, the “current” position will be increased by Count .

If you want to retrieve bytes from a position other than the “current” position maintained by the
Driver, you can supply a Posi t i on argument. If you supply this argument, the Driver ActiveX
control will begin retrieving bytes at the specified position. When the method returns, the “current”
position will point just after the last byte retrieved.

Normally, you will probably want to step through the incoming frame in order, breaking out bytes
and integers as needed to understand the command. However, you can override this “stepping”
process by supplying a Posi t i on argument.

Note. If you supply a Count or Posi ti on that would cause the control to try to retrieve data from
before the beginning of the frame or after its end, the control will throw an exception.

» See also Receive, ReceiveGetinteger

> See also “User Frame Example”
42

MODBUS Driver ActiveX Control

Receive Get Integer Method

(no return) Method

control . Recei veGet | nt eger Val ue, Count, Position

Parameter Type Usage

Val ue Integer Returns integer(s) from the incoming message.

Count Integer Optional. The number of integers to retrieve. Defaults to 1.

Posi tion Integer Optional. Offset in bytes from the beginning of the received frame. Defaults to the

current position.

> Intended for advanced users.

Operates in exactly the same way as ReceiveGetByte, except (obviously) it extracts integers instead of

bytes.

Note. This method returns a signed integer. If you are extracting an unsigned integer value,
you will need to perform the necessary conversion (usually to a long integer).

» See also Receive, ReceiveGetByte

> See also “User Frame Example”

Release Comm Port Method

(no return) Method

control . Rel easeComPort

The first time that you invoke a Driver method that requires the use of the serial port, the MODBUS
Driver ActiveX control will automatically connect to the port and stay connected. The Driver will
normally maintain control of the serial port until the host application ends.

If you need to release the serial port (perhaps so another application can use it) you can invoke the
ReleaseCommPort method. This method causes the Driver to immediately terminate its connection
to the serial port and free the port.

Note. If you change the port that the Driver is using (via the CommPort property), it will
automatically release any connection it is currently maintaining and open the new
port on the next method invocation that requires serial port access.

Report Slave ID Method

Integer Method Command 17

43

MODBUS Driver ActiveX Control

Status = control.ReadQut put Regi st er s(Address, Sl avel D,
RunMode, DbDat aCount, Devi ceDat a)

Parameter Type Usage

Addr ess Integer Address of the MODBUS device that is to receive the command.
Slavel D Integer Returns the MODBUS device’s Slave ID.

Runhbde Boolean Device is running.

Ddat aCount Integer Number of items in the Devi ceDat a array.

Devi ceDat a Integer Array Device-dependent status information.

This command reads the MODBUS device’s Slave ID and run state. It also returns an array of device-
dependent data, one byte per element.

The meaning of the values in the Devi ceDat a array is completely dependent on the MODBUS
device. In some cases, you may need to “assemble” two bytes into a word to get the “actual” value.
Consult your device’s documentation for details.

Returns O for success or an error code.

Trace String Method

(no return) Method

control . TraceString "StringExp"
Parameter Type Usage

StringExp Integer String to write to trace file.

If you have enabled communications tracing using the TraceEnable and TraceFile properties, you can
use the TraceString method to send any arbitrary string to the communications tracing output file.
This gives you a way to place “comments” into the trace file so you can identify the command traces.

> See also TraceEnable, TraceFile

User Add Byte Method

Integer Method

| ength = control . User AddByt e(Val ue, Count)

Parameter Type Usage
Val ue See below Byte or bytes to add to user command.
Count Integer Optional. Number of bytes to add. Defaults to 1.

» Intended for advanced users.
This command is used to add bytes to a User command that you are building. These bytes are taken

44

MODBUS Driver ActiveX Control

from the Value parameter, which is a Variant. Since Variant parameters can contain a wide variety of
data types, the actual type used here depends on your application. You can pass a single byte, a single
integer, a byte array, or an integer array.

The Count parameter determines how the Val ue parameter is interpreted. If Count is 1 or
omitted, the Driver will treat Val ue as a scalar, adding its Least Significant Byte to the frame. If
Val ue is an array, the Driver will add the Least Significant Byte of Val ue(0) to the user
command frame.

If Count is greater than 1, then Val ue must be an array of integers or bytes. The Driver ActiveX
control will add the Least Significant Byte of Count elements of the array to the user command
frame.

Returns the new length of the outgoing command frame.

Note. You must set up the User command frame with the UserInit method before you can
use the UserAddByte method. If you call the UserAddByte method before Userlnit,
the control will throw an exception.

» See also UserAddInteger, Userlnit, and UserSend.
> See also User Frame Example

User Add Integer Method

Integer Method

l ength = control . User Addl nt eger (Val ue, Count)

Parameter Type Usage
Val ue See below Integer or integers to add to user command.
Count Integer Optional. Number of integers to add. Defaults to 1.

» Intended for advanced users.

Works in exactly the same way as the UserAddByte method, but adds integers (words). For this
method, the Val ue parameter can contain only a single integer or an integer array.

Returns the new length of the outgoing command frame.

Note. You must set up the User command frame with the Userlnit method before you can
use the UserAddInteger method. If you call the UserAddInteger method before
Userlnit, the control will throw an exception.

» See also UserAddByte, Userlnit, and UserSend.
> See also “User Frame Example”

45

MODBUS Driver ActiveX Control

User Init Method

(no return) Method

I ength = control. Userlnit(Address, Command)

Parameter Type Usage
Addr ess Integer The address to receive the MODBUS command. Use 0 for broadcast mode.
Conmand Integer The MODBUS command number (0 — 255).

> Intended for advanced users.

The Userlnit method sets up the MODBUS Driver ActiveX control for the construction and
transmission of a user command frame. You must call this method before you can call any of the
other user command methods, such as UserAddByte, UserAddInteger, and UserSend.

The user command methods allow you to construct MODBUS commands that are not natively
supported by the Driver. You may need to use this method if your device requires nonstandard
commands, or if you need to reply to an incoming MODBUS command captured with the Receive
method.

Calling the UserInit method establishes what MODBUS command you want to send and what address
you want to send the command to. After calling Userlnit, you can use the UserAddByte and
UserAddInteger methods to append data to the end of the command frame, if any additional data is
needed. Once the frame is complete, use the UserSend command to transmit it.

Note. The user command methods are needed on/y to transmit MODBUS commands not
already supported by the driver. You do 7oz need to call the User methods to use
MODBUS protocol commands like Read Input Status. Such commands have their own
dedicated methods (e.g., ReadlnputStatus).

» See also UserAddByte, UserAddinteger, and UserSend.
» See also “User Frame Example”

User Send Method

Integer Method
Status = control. User Send()
» Intended for advanced users.

Sends a user command frame that has been built with the Userlnit, UserAddByte, and
UserAddInteger commands.

Returns O for success or an error code.

Note. You must set up the User command frame with the UserInit method before you can
use the UserSend method. If you call the UserSend method before Userlnit, the
control will throw an exception.

46

MODBUS Driver ActiveX Control

Note. The UserSend method does NOT wait for a reply from the MODBUS device. It
simply transmits the command frame and returns. If you expect a reply from the
MODBUS device, and you want to examine this reply, you must capture and interpret
it with the Receive method. Note that you can simply choose to ignore any reply if
you wish; the MODBUS protocol doesn’t require you to acknowledge incoming
frames.

» See also Userlnit, UserAddByte, and UserAddInteger
> See also “User Frame Example”

UserSendAutoParse Method

Integer Method

| ength = control . User SendAut oPar se(Addr ess, Conmmand)

Parameter Type Usage

Addr ess Integer Address of destination MODBUS
device

Conmmand Integer Command number to send

> Intended for advanced users.

The User SendAut oPar se method is the converse of the ReceiveAutoParse method. It creates a
reply frame based on the destination address, MODBUS command number, and parameters you

supply. You'll supply these parameters by assigning values to the AutoParse property array.
Let’s look at the Read Output Status command. A reply might look like this at the binary level:

Sample Value (hex) Type Description

11 Byte Destination address
01 Byte Function code

05 Byte Byte count

CDé6B Word Coils 20-35

B20E Word Coils 36-51

1B Byte Coils 52-56

As you'll remember, we were asking for 37 coils beginning with coil 20. The reply contains a byte
count, which tells the remote device how much data to expect. The coil values follow packed into 16-
bit words.

47

MODBUS Driver ActiveX Control

Following the logic established with the Recei veAut oPar se method, the command’s parameters
go into the Aut oPar se property array. The first parameter is the byte count, so that will go in

Aut oPar se(0) . The second parameter is the array of coil values, which goes into
Aut oPar se(1).

» The AutoParse Property Array Transmit Parameters Table tells you what values to place in
each element of the AutoParse property array for each MODBUS command reply.

This works because the Aut oPar se property is an array of Variants, which can contain virtually any
data type. The specific method for assigning an array to a Variant will depend on the host language,
but it is possible with any development environment that supports the ActiveX standard.

Once you have assigned all the parameters for your reply, you can dispatch it by using the
User SendAut oPar se method. To create the above reply, you might perform the following steps
in Visual Basic:

Dimbv(3) As Integer, status As Integer

bv(0) = &HCD6B ' Assign coil values to an integer array

bv(1) = &HB20E

bv(2) = &H1B

control . AutoParse(0) =5 ' Set the first paraneter, byte count
control . AutoParse(1) = bv ' Set the second paraneter, the value array

Send reply to cormmand 1 (Read Qutput Status) to address 17
status = control. User SendAut oParse(17, 1)

» See also AutoParse Property Array, ReceiveAutoParse, Slave / AutoParse Example

Word To Array Method

(no return) Method

control . WrdToArray Wrd, Val ues

Parameter Type Usage
Word Integer The 16-bit integer to break into individual bits.
Val ues Integer Array Returns the bits that make up the source word.

This simple method is the reverse of the ArrayToWord method. It accepts a 16-bit integer and
returns a 16-element integer array. Each element of the Val ues array will contain one bit of the
original word. Val ues(0) will contain the state of Wr d’s bit O (the least significant bit),

Val ues(1) will contain bit 1, and so on.

Write General Reference Method

Integer Method Command 21

48

Parameter
Addr ess
Ref Type
Fi | eNo
Start
Count

Val ues

MODBUS Driver ActiveX Control

Status = control.WiteGeneral Ref erence(Address, Ref Type,
FileNo, Start, Count, Val ues)

Type

Integer
Integer
Integer
Integer
Integer

Integer Array

Usage

Address of the MODBUS device that is to receive the command.

The reference type.

The number of the file to write.

Address of the first register within the file to write.

Number of registers to write. Limited to 120 or less on most MODBUS devices.

Contains the data values to write.

The Write General Reference command provides a way to store registers in large blocks. It was
originally designed to allow access to optional “extended” memory. Contemporary MODBUS devices
use this command (and its companion, Read General Reference) for a wide variety of different
functions. Consult your device’s documentation for details.

Returns O for success or an error code.

Write Multiple Registers Method

Integer Method

M Broadcast Command 16

Status = control. WiteMiltipl eRegisters(Address, Start, Count, Val ues)

Parameter

Addr ess

Start
Count

Val ues

Type

Integer

Integer
Integer

Integer Array

Usage

Address of the MODBUS device that is to receive the command. Use O for
broadcast mode.

The first register to write (40001 — 49999).
Number of registers to write. Limited to 120 or less on most devices.

New values for the registers.

This command writes new values to output (holding) registers.

Returns O for success or an error code.

Write Register Method

Integer Method

M Broadcast Command 06

Status = control.WiteRegisters(Address, Register, Value)

Parameter

Addr ess

Regi ster

Val ue

Type

Integer

Integer

Integer

Usage

Address of the MODBUS device that is to receive the command. Use O for broadcast
mode.

The register to write (40001 — 49999).

New values for the register.

49

MODBUS Driver ActiveX Control

This command writes a new value to a single output (holding) register.

Returns O for success or an error code.

MODBUS Driver ActiveX Control

Index

A

AutoParse parameter table ..o 25

B

Building MODBUS Driver AppLCations.......ceeueererirueueerirenieeeeineeeereeeseseeseeeseseeseeseenns 4

C

CADLING 1.t 7

E

Err0r Codes .. ouiiiiiiiiiieieieicie ettt 10

EXCEPLIONS ...ttt 11

H

Hardware LocK. ..ottt ettt 9

|

INtrodUCHION. ...eiiiiiiiicc e 3

M

Methods
ATTAY 10 WOTd. .ottt 34
Fetch Event COUNLerc.coiiiiiiinieiiecinictceeicereeete ettt 34
Fetch Event LLog ..ottt ettt 34
FOrCe COiluiuiiiiiiiiiciicec ettt 35
Force MUltiple Coilsccueveirieuiniiiiinieinieeicieietctnteeree ettt sne e 35
LLOOPDACK . ..ttt 36
Read EXCEPLioN STatusc.ceueerieuerieieirieiinieieinieit ettt 36
Read General Reference.......euviiiniciniiiniiicinieiniecinictcctnicte et 36
Read Input ReGISTErs.cucuevieuiriiieiricinieieieieirtcee ettt 37
Read INput Status.......ccoueuiviiiiiiiiiiiiiiiiec e 37
Read Output Registers.......ccoiviiiiiiiiniiiiiiiiiiiicciccee e 38
Read Output Status.......c.ccvvuiiiiiiiiiiiiiccc e 38
RECEIVE ..o 39
Receive Get Byte. ..o 42
Receive Get INteZEroovuiiiiiiiiiiiiiiciicc e 43
ReECEIVEAULOPAISE ...ttt 40

MODBUS Driver ActiveX Control

Release Comm PoOrtceoiiueiiniiiniiiiiiinicincccctcc ettt 43
Report S1ave ID ..ottt 43
TTACE SEINZ. ettt ettt bttt es 44
USEr Add Byte ..ottt sttt 44
User Add INTEZET ..veuiveiiieiiieicieicitceeetect ettt ettt 45
USEr TNIt ot 46
USEr SENd ... 46
User SendAUtOPAISec.covvviieuiiiriiccireecee et 47
WOLd T ALTAY ..ottt et 48
Wirite General Reference ..o 48
Wirite Multiple REGIStErsccciviiuiiiiiiiiiiiiiiciiccce s 49
WIrite REGIStEr....c.oiuiiiiiiiiiiiiiciicccc s 49

O

Optional arguments in C ..cooueciniiiiiiiiinieiiecccc e 33

P

PrOPeIties...c.couiiuiieiiiiieice e 18
ASYNCBULION .ttt ettt 19
AsyncHandshake ..o 21
ASYNCIVIESSAZE ...ttt ettt et eaes 21
AULOPAISE ...ttt 22
Baud Rate.....co.ciiiiiiiiiiiiici e 27
Char TIMEOUL ...cveieieiiiiee ettt e 27
Comm POrt ..o 28
Frame TIMEOULceiiiiiciiireecciee et 28
I/O MaPPINg.....coviiuiiiiiiiiiinicce et 29
Ky POt oo 29
Last Error. ..o 29
Last EITor SEHNG ...c.ooviiiiiiiiiiiieiecieee e 30
Parity e 30
SEOP BIES vttt ettt 30
Trace Enable ..ot 31
TTACE FLE ottt 31

S

SOTEWATE LLICEIISE et e et e e e e e e e e e e ee e e e e e e e e e s e eeaeeeeeeeaaaeeseneans 1

U

User Frame Example......c.ccoeoiviiiiiiiiiiiiiiceeee e 15

52

V

Variants

MODBUS Driver ActiveX Control

53

