
MODBUS™
Communications

Driver

User’s Manual

Version 2.100 --- March 21, 1993

Copyright © 1988 - 1998, Automation Consulting Services, Inc. All rights reserved.

Subject to change without notice.

SOFTWARE LICENSE AGREEMENT

IMPORTANT! The enclosed materials are provided to you on the express condition that you agree
to this Software License. By opening the diskette envelope or using any of the enclosed diskette(s)
you agree to the following provisions. If you do not agree with these license provisions, return these
materials to Automation Consulting Services, Inc., in original packaging with seals unbroken, within
3 days from receipt, for a refund.

1. This software and the diskette on which it is contained (the “Licensed Software”), is
licensed to you, the end user, for your own internal use. You do not obtain title to the
Licensed Software or any copyrights or proprietary rights in the Licensed Software.
You may not transfer, sub-license, rent, lease, convey, copy, modify, translate,
convert to another programming language, decompile, or disassemble the Licensed
Software for any purpose.

2. The Licensed Software is provided “as-is”. All warranties and representations of any
kind with regard to the Licensed Software are hereby disclaimed, including the
implied warranties of merchantability and fitness for a particular purpose. Under no
circumstances will the Manufacturer or Developer of the Licensed Software be liable
for any consequential, incidental, special, or exemplary damages even if apprised of
the likelihood of such damages occurring. Some states do not allow the limitation or
exclusion of liability for incidental or consequential damages, so the above limitation
or exclusion may not apply to you.

Incorporated Driver Amendment

If you own the ACS modbus driver (Incorporated Version), this license is amended to
provide for the free or for-profit distribution of software incorporating modbus Driver
code as follows: you may distribute executable programs containing the complete and
unaltered ACS modbus Driver (Incorporated Version). The Incorporated Version
Libraries may not be copied, sold, modified, distributed, or used by more than one
user at a time; they are treated as Licensed Software as described above. You can
only distribute the Driver as a part of self-standing executable code (EXE files). No
royalties or additional licenses are required to distribute such standalone programs.

For Windows DLLs, you may distribute the DLL (distribution) version without
royalties, but you may not distribute the Development (VBX) version. It is treated as
Licensed Software as described above.

Table of Contents

Revision 2.100 March 21, 1993 Page i

General Information.. 1

Copy Protection .. 3
Hardware Lock.. 3

Cabling.. 4
PC Serial Port.. 4
AT Serial Port ... 5
The Cable.. 5

Interfaces... 7
Interpreted basic.. 7
QuickBASIC V4.5 .. 10
Turbo PASCAL V7.0.. 12
C.. 14

Error Codes ... 16

Function Quick Reference by Function Number.. 17
Variable Names used in Quick Reference Table ... 19

Function Summary.. 21
RDOS --- Read Output Status... 22
RDIS --- Read Input Status ... 23
RDOR --- Read Output Registers ... 24
RDIR --- Read Input Registers ... 25
WRSC --- Write Single Coil... 26
WRSR --- Write Single Register .. 27
LOPBAK --- Loopback Test... 28
WRMP --- Write Multiple Points ... 29
WRMR --- Write Multiple Registers.. 30
SNDUSR --- Send User Command... 31
SETDEL --- Set Communications Delays.. 34
CHNPOR --- Set Comm. Parameters.. 36
RCVUSR --- Receive Incoming Command ... 37
BRKRCV --- Dissect Incoming Frame... 39
SRBCONV --- Convert String to Register and Bit... 42
SRCONV --- Convert String to Register .. 43
WORDAR --- Break Word into Array.. 44
ARWORD --- Assemble Array into Word ... 45
STEXT --- Send Text to Port.. 46
IOMAP --- Control I/O Mapping.. 47
OPPAR --- Other Port Parameters .. 48
KEYPORT --- Set Hardware Key port ... 49

MODBUS Communications Driver

New in Version 2.1

There have been several important changes in the operation of the modbus Communications Driver
since the last version. If you are updating from a previous version of the Driver, please read this
section carefully to ensure proper operation.

Resident Driver

The Resident driver has been discontinued. The complete functionality of the Driver is now
contained in what was formerly the binding in previous versions. For example, for Quick Basic
version 4.5, the whole Driver is contained in the Quick Libraries.

There is no longer any resident portion of the Driver to load at the command line. In the case of
Quick Basic, starting QB with the normal command line:

QB program /L MBDRV

will load the driver automatically. There is no longer any need to load the mbdrv.exe file from the
DOS command line before starting your application; indeed, the new version does not use an
executable file.

SentinelC Key

In order to improve reliability, we have changed to a new type of hardware key manufactured by
Rainbow Technologies. Unlike previous keys, this key can be used on parallel ports other than
LPT1. To change the port where the Driver will look for the key, call mbdrv with the function
synopsis:

CALL MBDRV(B_KEYPORT, STATUS, PORTN, B, B, B)

where portn is the integer number of the parallel port where the key is located (1 to 3).

If you are using the default port, LPT1, there is no need to call the keyport function. Rather than
checking the key once upon loadup, the Driver now checks the key at random intervals. The Driver
will return a status of -2 if the key is not detected.

The keyport command is described in more detail on page 50.

Support for “software key” protection has been discontinued.

MODBUS Communications Driver

Revision 2.100 March 21, 1993 Page 1

Introduction

The mbdrv Communications Driver is a memory resident DOS extension written in 8086 machine
language which enables basic programs to communicate with devices that understand the Gould
modbus™ Process Control Protocol.

The driver provides an easy way for the user to develop programs that access a modbus device’s
points and registers. Information is passed using standard variables in the user’s host language; the
modbus driver handles all protocol formatting and variable conversion in both directions. mbdrv
always operates in “RTU” (Binary) mode.

The modbus driver is available with interfaces to a variety of languages, including IBM Interpreted
basic, Microsoft Quickbasic, Microsoft C, and Turbo PASCAL. The individual interfaces are
described at the end of this section, just before the individual function synopses.

General Information

All of the language interfaces (called “bindings”) share the same general operating principles. First,
there is always a memory-resident portion of the driver that must be loaded before you can access
the modbus device. You must load this resident portion directly from PC-DOS. Once it has been
loaded, it will remain resident and available until you turn off or reset your computer.

This is especially important for languages like Microsoft Quickbasic and Interpreted basic that
provide a complete operating “environment”. For these languages, you must always load the Driver
before loading the language environment.

The individual language interfaces provide the necessary facilities to invoke the resident portion of
the driver. Usually, the language interface is a small object file or code segment that simply routes
your commands and data to and from the Driver’s resident portion.

“Include” files

Many languages, such as C and Turbo PASCAL, have facilities for “include” or “unit” files that can
establish constants and function definitions. Wherever possible, ACS has supplied appropriate
include files to make programming easier.

Sample Files

Each version of the Driver is supplied with one or more demonstration programs. Please take the
time to examine and run these demonstrators; a few minutes with the samples can save you a lot of
frustration. Since the sample programs are known to run, you can use them to test your hardware
setup. If the demonstration programs won’t run, your own code probably won’t either. Also, since
we wrote the samples, it will be easy for us to diagnose problems encountered while working with
them.

MODBUS Communications Driver

Page 2 March 21, 1993 Revision 2.100

The sample programs can give you a head start on your own application by showing you proven
ways to construct an application program. In fact, you may wish to simply “cannibalize” the
Demonstrator programs to fit your own application.

Help !

If you have trouble, have any questions about how the driver works, or want advice about special
applications, please be sure to contact us... a two minute phone call could save you hours of
frustration. We are more than willing to help you use any unmodified software provided by ACS.
We will also answer questions about your programs (and help you debug programs that use mbdrv)
as time permits.

If you find a bug in mbdrv, be sure to let us know. To help us fix the bug, document it as
completely as possible. If you are not sure whether the bug is in your program or the driver, please
ship us your program on an IBM compatible disk with documentation of the problem. If the
problem is in the driver, we will locate and repair it and return your disk as quickly as we can.

The rest of this manual consists of language interface descriptions and synopses of mbdrv’s func-
tions. In the synopses, all variables are integers unless otherwise noted. The variable B is used as a
dummy placeholder to ensure that six parameters are always passed to mbdrv.

Note also that the function synopses are written for the Interpreted basic / Microsoft Quickbasic
version of the Driver. The other language interfaces use exactly the same function numbers and
parameters; the only difference between language interfaces is the “form” of the function calls.

Please read the function descriptions carefully before you use them to save yourself time and trouble
later. Be sure to save your program frequently! Always save it before you run it the first time. If
you have made a mistake (such as a basic mbdrv call with less than six parameters), the computer
may crash and have to be reset. Unfortunately, basic makes absolutely no provision for the type of
error checking that would prevent these problems, so you have to be very careful.

Good luck!

MODBUS Communications Driver

Revision 2.100 March 21, 1993 Page 3

Copy Protection

Unfortunately, software piracy is a problem that plagues all program developers: the temptation to
copy an unprotected disk is great, and there is little actual danger to the pirate. But copy protection
often offends users and sometimes involves unnecessary “hassles”. In order to keep everyone honest
with a minimum of trouble for the user, ACS has decided to issue all of its single-user Driver
products in copy-protected form.

Note. Incorporated versions of the Driver are not copy protected.

Hardware Lock

The single-user Driver is protected by a Hardware Lock. Programs protected with a Hardware Lock
come on ordinary floppy diskettes. You can (and should) make a backup copy of the protected files,
using the DOS diskcopy command if you wish. The protection is incorporated into the files
themselves and into the locking device.

The Hardware Lock itself is a small device resembling a “gender changer”. It has two 25 pin
connectors on it, one male and one female.

When you run a program protected with a Hardware Lock, the software will periodically examine
your computer’s parallel printer port. If the correct Hardware Lock is found, the program runs
normally. If the locking device is not present, the program will not operate.

To use the Hardware Lock, simply copy the original program diskettes into a directory on your hard
disk. Next, plug the male end of the Hardware Lock device into your computer’s parallel printer
port (LPT1). If there is a printer already attached to your system, simply plug its cable into the
female end of the Hardware Lock.

Once you have attached the locking device, you are ready to run the software. Your computer
should operate just as before; the device is only active when the software specifically queries it.
The Lock is also transparent to printing.

By default, the Driver looks for the Hardware Key on printer port LPT1. To change the port where
the Driver will look for the key, call mbdrv with the function synopsis:

CALL MBDRV(B_KEYPORT, STATUS, PORTN, B, B, B)

where portn is the integer number of the parallel port where the key is located (1 to 3). See the
description of the keyport command below (page 50) for more details.

If you are using the default port, LPT1, there is no need to call the keyport function. The Driver
will return a status of -2 if the key is not detected.

MODBUS Communications Driver

Page 4 March 21, 1993 Revision 2.100

Cabling

Normally, your ACS software will be supplied with a cable suitable for connecting the IBM PC or
compatible to the modbus device.

However, some of our customers find that they need to make their own cables. This section
describes the cable and pinouts at each end of the connection. The serial port pinouts are included
for reference, since they are not often described in computer manuals.

PC Serial Port

The IBM PC serial port is a DB25M (25-pin Male) connector. Here are its pinouts (pins not listed
are No Connection):

Pin Direction Signal

1 Shield Ground

2 Output Transmit Data

3 Input Receive Data

4 Output Request to Send

5 Input Clear to Send

6 Input Data Set Ready

7 Signal Ground

8 Input Carrier Detect

9 Output+ Transmit Current Loop

11 Output- Transmit Current Loop

18 Input+ Receive Current Loop

20 Output Data Terminal Ready

22 Input Ring Indicator

25 Input- Receive Current Loop

Note: Only strictly IBM-compatible serial ports implement the 20ma current loop
interface.

MODBUS Communications Driver

Revision 2.100 March 21, 1993 Page 5

AT Serial Port

The IBM PC AT serial port is a DB9M (9-pin Male) connector. Here are its pinouts:

Pin Direction Signal

1 Input Carrier Detect

2 Input Receive Data

3 Output Transmit Data

4 Output Data Terminal Ready

5 Ground

6 Input Data Set Ready

7 Output Request to Send

8 Input Clear to Send

9 Input Ring Indicator

The Cable

You can use the Driver with a three-wire (Transmit Data, Receive Data, and Ground) cable. ACS
uses the following cable:

Conductor Signal IBM PC Pin IBM AT Pin Device Pin

1 Ground 7 5 7

3 TD 2 3 3

4 RD 3 2 2

Unfortunately, not all modbus devices have standard serial ports. You may need to experiment in
order to find the correct cabling setup. A “breakout box” or similar device can be very helpful while
trying to set up a serial communications link.

MODBUS Communications Driver - Interfaces

Revision 2.100 March 21, 1993 Page 7

Interfaces

Interpreted BASIC

The Resident driver is provided in a file called mbdrv.exe. No Incorporated Version is available for
Interpreted BASIC. To load the driver into memory, type:

MBDRV r

at the PC-DOS command level. The driver will load, display its signon banner, and return to PC-
DOS.

In the Interpreted (IBM) basic interface, information is passed to and from the processor via normal
integer and string variables. The basic “mbdrv” statement provides access to the communication
functions.

Mbdrv communicates with the modbus device via your IBM PC’s serial port (COM1). You will
need the cable provided by ACS to connect the device to the computer.

To use the driver, you load it once from the DOS command level. After the driver is in memory, it
will remain there until you reset or turn off the computer. The driver consumes about 8 K of user
memory. Note that mbdrv does not consume any of basic’s data or program space since it is loaded
before basic.

The driver is provided in a file called mbdrv.exe. To load the driver into memory, type:

MBDRV r

at the PC-DOS command level. The driver will load, display its signon banner, and return to PC-
DOS.

Once the driver is resident in memory, you can enter and leave basic as many times as you wish.
You do not have to reload the driver unless you reset or turn off the computer.

In order to call the Driver from basic, you must know where in memory it is located. When you
load the driver, it stores its location (the segment number where it resides) in the inter-application
communication area reserved by DOS. The segment number can be found at address 0:4F2.

Once you have loaded basic, you will need the segment number to call the driver. To get it, you
should include the following statements in you program:

DEF SEG = 0 [Sets user segment to 0]
MBSEG = PEEK(&H4F2)+PEEK(&H4F3)*256 [Read mbdrv seg.]
DEF SEG = MBSEG [Establish access to driver]
MBDRV = 0 [Call to offset 0 within segment]

These statements determine the location of the driver by reading it from address 0:4F2 and then set
up for calls to the driver. Assigning 0 to mbdrv merely sets the destination address within the
segment to 0.

MODBUS Communications Driver - Interfaces

Page 8 March 21, 1993 Revision 2.100

After you have executed these statements, you can call the driver with a basic mbdrv statement of
the form:

CALL MBDRV(FNO,STATUS,ARG1,ARG2,ARG3,ARG4)

where FNO is the function number, STATUS is the return code, and ARG1 through ARG4 are
parameters.

You must always call the driver with six parameters. The basic machine language interface is not
very flexible; the only straightforward way to make the driver functions readily accessible is to use a
fixed length parameter block and a series of function codes.

The mbdrv statement always expects variable parameters. There is no way to “call by value”.
Therefore, you must always assign constant parameters to a variable before executing the mbdrv.
Also, you should be very careful about the types of variables in the mbdrv. There is no way for the
driver to make sure that you have passed the right number and type of parameters, so you may
disrupt your system if you make a mistake. In fact, the most common type of problem that you will
experience will probably be bizarre driver behavior due to incorrect parameter types or number.

You should also be sure that variables are defined before you pass them to the driver. basic
sometimes “hangs up” if you pass an undefined parameter to a machine language subroutine.

Since nearly all of the parameters required by mbdrv are integers, you may wish to use the defint
statement at the beginning of your program to define one or more letters as “default” integers. If
you do so, you can use variables beginning with those letters to communicate with the driver. This
method will avoid many annoying and difficult to trace problems.

The first parameter in the call mbdrv statement (FNO in the above example) is always the function
number. This integer number selects the driver function that you wish to use. There are about
twenty standard functions provided by the driver.

The second parameter (STATUS in the sample call) is an integer used to communicate error
conditions. Any nonzero value indicates a problem occurred during the transfer. See the table of
error values for more complete information. You should probably check the status codes after each
call.

The third, fourth, fifth, and sixth parameters vary according to the function being called. Again, you
must always pass a total of 6 parameters to the Driver!

Arrays

When using Arrays with the Interpreted basic binding, always pass them by their first element. In
other words, if you have DIMensioned an array called INTAR with 10 elements, and you wish to
refer to it in a mbdrv call, you should type INTAR(0). This will take care of problems sometimes
caused by basic, which considers “INTAR” a legal variable name distinct from INTAR the array.

The correct way to call mbdrv with the array argument is shown in this code fragment (all variables
are integers):

MODBUS Communications Driver - Interfaces

Revision 2.100 March 21, 1993 Page 9

DIM INTAR(5)
REG = 40300
CT = 3
CALL MBDRV(MB.RDOR,STATUS,REG,CT,INTAR(0))

Sample Files

Two basic program files are provided on the distribution diskette to help you use mbdrv. They are
named mbheader.bas and mbshort.bas. Mbheader.Bas contains a commented header which
takes care of setup for mbdrv calls. It declares variables beginning with ‘M’ to be integers and
assigns function numbers to named variables to make calling mbdrv functions easier. For example,
function number 1 (RDIS, Read Input Status) is assigned to the variable MB.RDIS. Mbheader.Bas

also performs the standard call to establish communications.

Mbshort.Bas is a version of mbheader.bas which has all of the comments removed.

We suggest that you start with one of the header files when developing programs the use mbdrv.
Doing so will help you avoid some of the more annoying bugs that you might otherwise encounter.

There is another program file, called mbdemo.bas, on the distribution diskette. This program is
intended as a sample of what can be done with mbdrv. To use it, issue the following commands at
DOS command level:

MBDRV r
BASIC MBDEMO r

It may take several seconds for the program to display anything. Once the program is running, its
operation is more or less self-explanatory.

Mbdemo should provide a good introduction to mbdrv’s capabilities. Feel free to adapt or modify
mbdemo if you wish. We recommend that you at least look over mbdemo’s program listing to get a
better feel for how the driver operates.

MODBUS Communications Driver - Interfaces

Page 10 March 21, 1993 Revision 2.100

QuickBASIC V4.5

Important Note! The Quickbasic 4 Driver is NOT compatible with the basic interpreter, nor is it
compatible with Quickbasic prior to V4. This Driver can ONLY be used with Quickbasic Version
4 or later.

When entering Quickbasic, you must load the Driver when you load QB. To do this, make sure that
the Quick Library file mbqb4drv.qlb, supplied with the binding, is in the current directory. Then
type:

QB <basic file> /L MBQB4DRV r

This command loads Quickbasic with the binding resident. If you do not load the binding, you will
get “Unresolved Subprogram Reference” errors.

To load the driver and Quickbasic with the supplied Quickbasic demo program mbqbdemo, type the
following commands:

QB MBQBDEMO /L MBQB4DRV r

Note that the file mbdrv.h (the Driver Include file), found on the distribution disk, must be in the
current directory before you try to compile the demo.

Press f + % to run the demo. Make sure that you have connected to the modbus device
before starting the program.

Arrays

When using Arrays with the Quickbasic V4 binding, always pass them by their first element. In
other words, if you have DIMensioned an array called INTAR with 10 elements, and you wish to
refer to it in a mbdrv call, you should type INTAR(0). If you always use this technique, you will
avoid problems caused by Quickbasic moving an array between calls without updating the Array
Descriptor. If you specify INTAR(0), the Driver will always get what it expects, a pointer to the
first element of the destination array.

The correct way to call mbdrv with the array argument is shown in this code fragment (all variables
are integers):

DIM INTAR(5)
REG = 40300
CT = 3
CALL MBDRV(mbRDOR,STATUS,REG,CT,INTAR(0))

MODBUS Communications Driver - Interfaces

Revision 2.100 March 21, 1993 Page 11

DECLARE & Header file

For your convenience, we have included a “Header” include file which defines all of the
MBQB4DRV function numbers as CONSTants. This file is called mbdrv.h. You may wish to use
the $INCLUDE metacommand to bring this file into your basic Driver programs.

In this header file, the mbdrv function numbers are defined as integer constants beginning with
“mb”. For example, the constant mbWRSC is defined as the integer 5, which corresponds to
function WRSC (Write Single Coil).

The file also includes the statement:

DECLARE SUB MBDRV (SEG NF AS INTEGER, SEG ST AS INTEGER, SEG P1
AS ANY, SEG P2 AS ANY, SEG P3 AS ANY, SEG P4 AS ANY)

This statement MUST be included in all QB 4 programs that call the Driver. It will cause
Quickbasic to send segmented addresses to the Driver, in addition to making sure that you always
call mbdrv with the proper number of parameters.

Technically, the DECLARE statement forces QB to pass all mbdrv parameters with segmented
addresses. QB 4 may or may not choose to place arrays and variables in “near” memory, depending
on a complex (almost erratic) set of criteria which cannot be tested by the Driver. Accordingly, the
QB 4 Driver must use “far” (segmented) addressing, which is less efficient.

Passing Near (unsegmented) parameters to the QB 4 Driver is guaranteed to be spectacularly
fatal!

You can achieve the same result as the DECLARE statement by changing all of the “call mbdrv”
statements in your program to “calls mbdrv”, but this will not count call parameters like the
DECLARE statement does.

Array Note

IMPORTANT! For commands that take multiple arrays (BRKRCV, SNDUSR, etc.) as parameters,
it is crucial that the arrays be in the same 80x86 data segment. This can be a problem in
Quickbasic, which often places data in multiple data segments.

Since Quickbasic does not allow you to control segment allocation, you should take precautions.
For example, you could copy the array contents into separate vectors of a multi-dimensional array
(such arrays are always kept in a single segment).

MODBUS Communications Driver - Interfaces

Page 12 March 21, 1993 Revision 2.100

Turbo PASCAL V7.0

The standard basic version documentation still applies to the Turbo binding. There are only two
differences to keep in mind.

First, the Turbo binding returns the STATUS word as its return value instead of assigning it to a
parameter. In other words, when you execute the mbdrv function, it returns the STATUS value.
This should be zero under normal circumstances.

Turbo PASCAL is no better than basic at handling variable-length parameter lists. It only permits
such lists in calls to some of its built-in functions, like writeln. Therefore, you must always pass a
function number and four parameters, even if not all of them are used. Turbo’s strict type checking
will help you with this.

Second, unlike basic, Turbo does permit value parameters in function calls. This capability is used
for the function number, which is the only parameter that is never changed by the Driver. In other
words, you can use a constant for the function number, something you could not do with basic (you
had to assign the function number to a variable before the call).

A sample Turbo PASCAL program called MBDTEST.PAS is also supplied. This program permits
you to monitor a table of registers on the modbus device. To run it, load the Turbo PASCAL Driver,
load Turbo PASCAL with MBDTEST as the current file, and press Alt-R to Run the sample. The
program should connect to the modbus device and ask you for a starting register and a length. Once
you have supplied these parameters, the program will run until you press a key.

The MBPASDRV Unit

The Turbo 4 version of the Driver takes advantage of Turbo’s “unit” capability. To make the Driver
callable from a particular Pascal program, simply include the statement:

uses MBPASDRV;

Note that the file MBPASDRV.TPU, supplied on the Driver distribution disk, must be present in the
current directory for this to work.

The MBPASDRV “unit” contains a list constant function numbers used to access mbdrv functions.
All of these constants begin with “MB_”. For example, the constant MB_RDOR is defined in the
unit as 3, the function number for Read Output Register. The file MBPASDRV.I is included so that
you can see the list of constants found in the unit file.

Array Note

IMPORTANT! For commands that take multiple arrays (BRKRCV, SNDUSR, etc.) as parameters,
it is crucial that the arrays be in the same 80x86 data segment. This can be a problem in Turbo
Pascal, which often places data in multiple data segments.

MODBUS Communications Driver - Interfaces

Revision 2.100 March 21, 1993 Page 13

Since Turbo Pascal does not allow you to control segment allocation, you should take precautions.
For example, you could copy the array contents into separate vectors of a multi-dimensional array
(such arrays are always kept in a single segment).

MODBUS Communications Driver - Interfaces

Page 14 March 21, 1993 Revision 2.100

C

The Microsoft C binding is very similar to the standard basic interface. Calls to the driver take the
form:

status = mbdrv(fno,parm1,...);

where “fno” is an integer function number. mbdrv returns an integer value containing an error code
(STATUS value), if any. A return code of zero indicates that the operation was successful.

The function mbdrv() should be declared as:

extern int mbdrv();

Note: If you are using C++, you must use the syntax:

extern "C" int mbdrv();

The driver interface is found in a library file called mbdrv.lib. This file contains the actual mbdrv()
function, and you must link it with any C program that calls the driver. Mbdrv is designed for use
with the Small memory model. A second library file, mbdrvm, is provided for use with the Medium
memory model.

Note! The standard binding has no provision for operation with the Compact, Large,
or Huge models. Support for Compact/Large model programs is available by
special order. Please see the “Large Model” section below for more
information on working with Large model programs.

The only major difference between the C binding and the standard interface concerns value and
address parameters. basic does not permit value parameters, so the manual says that all parameters
must be passed by address.

The mbdrv C binding permits value parameters, so you may use them as often as possible. As a
general rule, any scalar (int, char, etc.) that is not modified by the function should be passed by
value.

Note! If you intend to use mbdrv calls that contain constant “value” parameters, be very careful
about C’s automatic typing. For example, if you refer to Register 40137, C will pass this as a long
by default, since it is greater than 32767. For proper operation, you must “cast” the constant to
unsigned int like this:

st = mbdrv(MB_RDOR, 1, (unsigned int) 40137, 2, intar);

This command reads 2 Holding registers starting at 40137 into the integer array intar.

Any array parameter (strings, integer arrays, etc.) must be passed by address. This is the normal
convention in C. You must also pass any scalar parameter which will be altered by the Driver by
address, usually by using the ‘&’ (address of) operator.

MODBUS Communications Driver - Interfaces

Revision 2.100 March 21, 1993 Page 15

Since the status word is returned directly by the driver, there is no need to include a “status”
parameter in each call. You may discard the status word returned by mbdrv() if it is not needed.
Any nonzero status value indicates an error has occurred.

Further, while basic and PASCAL cannot handle variable-length parameter lists, C can. When
using those languages, you must always pass a fixed number of parameters to the driver, padding the
list with dummies as needed. With C, you need only pass the number of parameters required by the
particular function call.

A header file, mbmscdrv.h, is included on the distribution disk to make the driver easier to use with
C. This header file “#defines” all of the function numbers to symbols of the form “MB_name”. For
example, symbol MB_WRMR is assigned to 9, the function number for the WRMR (Write Multiple
Registers) call. To use this file, simply put the statement “#include <mbmscdrv.h>” near the top of
your C source file.

Large Model

If you ordered the Large model modbus driver, there are several important facts to keep in mind.
Basic operation of the Driver is unchanged, but all parameters must be passed by reference. The
Small model Driver relies on the fact that scalar data types and pointers have the same size (16 bits)
in the Small model. Large model pointers are 32 bits wide, so the Driver can no longer accept
parameter lists containing both pointers and word-length parameters.

Since all Driver parameters must be passed by reference, you must assign numeric parameters to
variables before passing them to the Driver. The example above becomes:

int addr, count, intar[10], st;
unsigned int streg;

addr = 1;
streg = 40137;
count = 2;

st = mbdrv(MB_RDOR, &addr, &streg, &count, intar);

Incorporated Version

The Incorporated Driver for Microsoft C is supplied as a LIBrary file, mbmsci.lib (mbmscil.lib for
the Large model). You should include this library name in your Linker command. With the
Incorporated Driver, there is no resident portion to load; the entire Driver is included in the library.

MODBUS Communications Driver - Interfaces

Page 16 March 21, 1993 Revision 2.100

Error Codes

Error Code

Buffer Overflow or Illegal Return
Frame

-4

No Such Port (CHNPOR) -3

Driver Not Resident -2

Timeout -1

No Error 0

Checksum Error 1

Illegal Parameter 2

Illegal Command Code 101

Illegal Address 102

Illegal Data Value 103

Command Error 104

These codes are returned in the STATUS variable upon completion of the call. Any nonzero value
indicates an error condition.

Modbus error return codes come back with 100 decimal added to them (see errors 101 - 104 above).
Mbdrv supports error codes greater than 4 (if your device’s implementation of the modbus protocol
uses them) in the same way.

MODBUS Communications Driver - Function Quick Reference

Function Quick Reference by Function Number

Function Name Function
Number

Parameter
1

Parameter
2

Parameter
3

Parameter
4

Description

RDOS 1 ADDR STON COUNT &DAR Read Output Status

RDIS 2 ADDR STIN COUNT &DAR Read Input Status

RDOR 3 ADDR STOR COUNT &DAR Read Output Registers

RDIR 4 ADDR STIR COUNT &DIR Read Input Registers

WRSC 5 ADDR STON DATA Write Single Coil

WRSR 6 ADDR STOR DATA Write Single Register

LOPBAK 7 ADDR TDATA RDATA Loopback Test

WRMP 8 ADDR STON COUNT DATAR Write Multiple Points

WRMR 9 ADDR STOR COUNT DATAR Write Multiple Registers

SNDUSR 10 SNDAR CTLAR Send User Command

SETDEL 11 LNGDEL QUIDEL DLMUL Set Communications Delays

CHNPOR 12 PORT BAUD Set Communications Parameters

RCVUSR 13 &ADDR &FC &RCVL &RDATA Receive Incoming Command

BRKRCV 14 RCVL CTLAR RDATA &DATAR Dissect Incoming Frame

SRBCONV 15 STR ®N &BITN Convert String to Register and Bit

SRCONV 16 STR ®N Convert String to Register

MODBUS Communications Driver - Function Quick Reference

WORDAR 17 DATA &DATAR Break Word into Array

ARWORD 18 DATAR &DATA Assemble Array into Word

STEXT 19 STR Send Text to Serial Port

IOMAP 20 FLAG Control I/O Mapping

OPPAR 21 PARITY STOPS DATAB Other Comm. Port Parameters

KEYPORT 22 PORTN Select Hardware Key port

MODBUS Communications Driver - Function QRF

Variable Names used in Quick Reference Table

Symbol Description

& Variable may be modified by function. Must be passed by
reference.

ADDR Destination Device Address

BAUD Integer Baud Rate Code (0 - 7)

CTLAR Integer “control” array

COUNT Integer count

DAR Integer “destination” array

DATA Integer value storage

DATAB Integer number of Data Bits (7 or 8)

DATAR Integer data array

DLMUL Integer Delay Multiplier

FC Integer Function Code

FLAG Integer Flag

INTAR Integer array

INTVAL Integer variable

LNGDEL Integer “Long” delay

OUTSTR String to transmit

PARITY Integer Parity flag (0 = None, 1 = Odd, or 2 = Even)

PORT Integer Comm. Port Number (1 or 2)

QUIDEL Integer “Quiet” delay

RCVAR Integer “receive” array

RCVL Integer “received” length

RDATA Integer “returned data” array

MODBUS Communications Driver - Function QRF

SNDAR Integer “send” array

SRAR Integer “source” array

STIN Starting Input Number (3xxxx)

STON Starting Output Number (0xxxx)

STOPS Integer Number of Stop Bits (1 or 2)

STIR Starting Input Register Number (3xxxx)

STOR Starting Output Register Number (4xxxx)

STR String variable

TDATA Integer loopback transmit value

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 21

Function Summary

This section contains a “synopsis” of each function supported by the modbus driver. The first
nine functions are simple “transaction” functions that issue a command to the modbus device
and return an answer. They are used to read and write data to the modbus device.

The remaining functions are “support” routines used to configure the modbus Driver, send and
receive user-generated commands, and perform conversions.

As mentioned above, each mbdrv function is shown in basic format. However, only the form of
the call will change when the Driver is used with other languages.

The modbus driver uses a total of four different variable types: Integer, Integer Array, Unsigned
Integer, and String. Integers are always 16-bit words. Strings are arrays of bytes less than 255
characters long. You will simply use the Integer, Unsigned Integer, and String types built into
your language; the language interface will take care of any necessary translation.

Remember! If a synopsis lists less than 4 ARGuments (in addition to the STATUS and
FUNCTION NUMBER parameters) you may still have to pass all four if you are using a
language like basic or Turbo PASCAL that does not permit variable-length parameter lists. For
these languages, you must “pad” the argument list out to four ARGuments with “dummy”
variables. Please consult the Language Interfaces section for more information on this topic.

Note: Throughout this section of the manual, we will refer to “addresses”. These addresses are
used as defined in the modbus Process Control protocol manual, that is, they are decimal
numbers between 00000 and 49999. The corresponding addresses are:

Address Writable Type

0xxxx Yes Internal Discretes (digital points) and
Discrete Outputs (Coils)

1xxxx No Discrete (digital) Inputs

3xxxx No Input Registers

4xxxx Yes Holding Registers

MODBUS Communications Driver - Functions

Page 22 March 21, 1993 Revision 2.100

RDOS --- Read Output Status

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 1 Function Number Integer
STATUS Error Return Integer
ARG1 Dest. Device Address Integer
ARG2 Starting Coil Number Unsigned Integer
ARG3 Number of Coils to Read Integer < 1950
ARG4 Return Array Integer Array

DESCRIPTION

This function reads the status of Output Coils (address 0xxxx) on the modbus device. The coil
status values are returned in a "packed" format, with each bit in the return array corresponding
to one output coil. If the number of coils requested is not evenly divisible by 16, unused return
array bits will be set to 0.

As a convenience, RDOS always stores the total number of words returned as the first element
of the ARG4 array.

The modbus Driver allows you to read up to 1950 bits in one operation, but your modbus device
may have a lower transaction length limit.

EXAMPLE

DIM INTAR(5)
REG = 20
CT = 23
CALL MBDRV(MB.RDOS, STATUS, REG, CT, INTAR(0), B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

This example reads a total of 23 bits starting at Output Coil Number 20. In the return array
INTAR, element 0 will contain 2, the number of words returned. Element 1 will contain the
current values of coils 20 - 35, with Bit 0 (the LSb) corresponding to Coil 20 and Bit 15 (the
MSb) corresponding to Coil 35. Element 2 of INTAR will contain Coils 36 - 42, with Bit 0 for
Coil 36, Bit 7 for Coil 42, and Bits 8 - 15 set to 0.

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 23

RDIS --- Read Input Status

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 2 Function Number Integer
STATUS Error Return Integer
ARG1 Destination Address Integer
ARG2 Starting Input No. Unsigned Integer
ARG3 No. of Inputs to Read Integer < 1950
ARG4 Return Array Integer Array

DESCRIPTION

This routine is similar to RDOS (Read Output Status), except it reads the status of Input points
(address like 1xxxx). The Input values will be packed 16 bits per return array element, just as in
the Read Output command.

Like RDOS, RDIS always stores the total number of words returned as the first element of the
ARG4 array.

The modbus Driver allows you to read up to 1950 bits in one operation, but your modbus device
may have a lower transaction length limit.

EXAMPLE

DIM INTAR(5)
REG = 10020
CT = 23
CALL MBDRV(MB.RDIS, STATUS, REG, CT, INTAR(0), B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

MODBUS Communications Driver - Functions

Page 24 March 21, 1993 Revision 2.100

RDOR --- Read Output Registers

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 3 Function Number Integer
STATUS Error Return Integer
ARG1 Destination Address Integer
ARG2 Starting Register No. Unsigned Integer
ARG3 No. of Registers Integer < 120
ARG4 Return Array Integer array

DESCRIPTION

This command returns the values of Output registers (address 4xxxx), one register per return
array element. The Driver permits you to read up to 120 registers in one operation, though your
modbus device may require shorter requests.

EXAMPLE

DIM INTAR(5)
REG = 40115
CT = 3
CALL MBDRV(MB.RDOR, STATUS, REG, CT, INTAR(0), B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
FOR L=0 TO 2 : PRINT REG+LA" = "INTAR(L) : NEXT L

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 25

RDIR --- Read Input Registers

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 4 Function Number Integer
STATUS Error Return Integer
ARG1 Destination Address Integer
ARG2 Starting Register No. Unsigned Integer
ARG3 No. of Registers to Read Integer < 120
ARG4 Return Array Integer Array

DESCRIPTION

This command is analagous to the Read Output Registers command, except it returns the values
of Input Registers, one register per return array element. The Driver permits you to read up to
120 registers in one operation, though your modbus device may require shorter requests.

EXAMPLE

DIM INTAR(5)
REG = 30227
CT = 3
CALL MBDRV(MB.RDIR, STATUS, REG, CT, INTAR(0), B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
FOR L=0 TO 2 : PRINT REG+LA" = "INTAR(L) : NEXT L

MODBUS Communications Driver - Functions

Page 26 March 21, 1993 Revision 2.100

WRSC --- Write Single Coil

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 5 Function Number Integer
STATUS Error Return Integer
ARG1 Destination Address Integer
ARG2 Coil Number Integer
ARG3 New Value Integer
ARG4

DESCRIPTION

Writes a new value to a single Output coil (address 0xxxx). The Driver will set the Coil to 0 if
"New Value" is zero, or to 1 otherwise.

EXAMPLE

CNO = 122
DAT = 1
CALL MBDRV(MB.WRSC, STATUS, CNO, DAT, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Coil 122 set to 1"

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 27

WRSR --- Write Single Register

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 6 Function Number Integer
STATUS Error Return Integer
ARG1 Destination Address Integer
ARG2 Target Register Unsigned Integer
ARG3 New Value Integer
ARG4

DESCRIPTION

Ths command changes the value of a single Holding register (address 4xxxx) on the modbus
device.

EXAMPLE

REG = 40116
DAT = 120
CALL MBDRV(MB.WRSR, STATUS, REG, DAT, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Register 40116 set to 120"

MODBUS Communications Driver - Functions

Page 28 March 21, 1993 Revision 2.100

LOPBAK --- Loopback Test

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 7 Function Number Integer
STATUS Error Return Integer
ARG1 Destination Address Integer
ARG2 Transmit Data Integer
ARG3 Returned Data Integer Array
ARG4

DESCRIPTION

This command performs a test to see if a modbus device is present and operating properly. To
perform the Loopback test, send a known integer value as ARG2. If all goes well, the STATUS
variable should be 0 on return. The Loopback test will also return two values in Integer Array
ARG3 : Element 0 should always be 0, and Element 1 should contain the Integer value sent as
ARG2.

Note that this command uses the "Mode 0" modbus loopback test. "Mode 1" is not supported.

EXAMPLE

DIM INTAR(3)
DAT = 1234
CALL MBDRV(MB.LOPBAK, STATUS, DAT, INTAR(0), B, B)
IF STATUS<>0 THEN PRINT"Loopback Communication Error":STOP
IF INTAR(0)<>0 OR INTAR(1)<>DAT THEN PRINT"Loopback failed."

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 29

WRMP --- Write Multiple Points

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 8 Function Number Integer
STATUS Error Return Integer
ARG1 Destination Address Integer
ARG2 Starting Point No. Unsigned Integer
ARG3 Count Integer < 1950
ARG4 Data Integer Array

DESCRIPTION

This command is the converse of the Read Output Status command. It writes new values onto
"Count" (ARG3) consecutive coils (address 0xxxx) starting at the Starting Point Number
(ARG2). Like the Read Output Status command, the Data array, which contains the new values
for the coils, is "packed". This is, each 16-bit word in the Data array corresponds to 16 Output
coils, beginning with the LSb of array element 0 and continuing upwards toward Bit 15.

EXAMPLE

DIM INTAR(5)
CNO = 144
CT = 23
INTAR(0) = &H27CD : INTAR(1) = 127
CALL MBDRV(MB.WRMP, STATUS, CNO, CT, INTAR(0), B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

This sample will write a total of 23 coil values. The least significant bit of INTAR(0) will
determine the new value of Coil 144, Bit 1 of INTAR(0) corresponds to Coil 145, and so on,
through Bit 7 of INTAR(1), which corresponds to Coil 166.

MODBUS Communications Driver - Functions

Page 30 March 21, 1993 Revision 2.100

WRMR --- Write Multiple Registers

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 9 Function Number Integer
STATUS Error Return Integer
ARG1 Destination Address Integer
ARG2 Starting Register No. Unsigned Integer
ARG3 Count Integer < 120
ARG4 Data Integer Array

DESCRIPTION

Assigns values from ARG4 to Count consecutive Holding registers (address 4xxxx) starting with
the register specified by ARG2. The Driver permits you to transmit up to 120 registers in one
operation, but your modbus device may have a lower limit.

EXAMPLE

DIM INTAR(8)
REG = 40118
CT = 3
INTAR(0) = 10 : INTAR(1) = 20 : INTAR(2) = 30
CALL MBDRV(MB.WRMR, STATUS, REG, CT, INTAR(0), B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Registers sent."

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 31

SNDUSR --- Send User Command

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 10 Function Number Integer
STATUS Error Return Integer
ARG1 Send Data Integer Array
ARG2 Control List Integer Array
ARG3
ARG4

DESCRIPTION

This command is designed to allow you to send commands not included in the basic set
supplied with the Driver. This command handles the transmission half of the operation only
(See the RCVUSR command for more information).

To use this command, you must initialize two arrays. The "Send Data" array contains the data
words and bytes that make up the command. The "Control List" array determines the format of
the string.

Each element of the Control array corresponds to one element of the Data array. When building
the command string, the SNDUSR command examines the two lowest bits of each Control array
element.

Control array Bit 0 is the Byte / Word Selector. If Bit 0 is zero, the corresponding element of
the Data array will be appended to the transmission string as a Byte. If Bit 0 is 1, the Data
element will be appended as a Word. Note that the Driver will automatically swap the high and
low order bytes to convert the Word from Intel format to the modbus protocol format.

Control array Bit 1 is the "end of string" marker; when the SNDUSR command detects Bit 1 set,
it appends the checksum word and sends the command string to the serial port.

The SNDUSR command will proceed through both Control and Data arrays one element at a
time, adding Bytes or Words as specified until the End of String bit is detected in the Control
array, or until the string length reaches the limit of 252 bytes. It will then transmit the command
and return immediately to the user program. SNDUSR does not wait for the reply! You must
use the RCVUSR command to retrieve the modbus device's answering string.

Note also that you must supply bytes for the entire string, including the Destination Address and
Command Number.

You can also use SNDUSR to answer command strings originating from the modbus device (in
modbus terminology, this is called "Slave mode"). Normally, the IBM PC would be the Master

MODBUS Communications Driver - Functions

Page 32 March 21, 1993 Revision 2.100

device, originating commands and awaiting replies. However, you can operate in Slave mode
using the RCVUSR command to await an incoming modbus command, then reply with the
SNDUSR command.

Note: SNDUSR examines only Bits 0 and 1 of the Control array elements. This
can be important, because it allows you to place the SNDUSR and
BRKRCV control masks into the same array for operations involving
user-defined commands. SNDUSR never alters the Control array.

IMPORTANT! When using the SNDUSR command, it is crucial that the Send and Control
Arrays be in the same 80x86 data segment. This is normally not a problem unless you are using
a language like Quick Basic or Turbo Pascal, languages that often place data in multiple data
segments.

If you are using a language that does not allow you to control segment allocation, you should
take precautions. For example, you could copy the Control and Data array contents into
separate vectors of a two-dimensional array (such arrays are always kept in a single segment).
In Turbo Pascal, you can generally force the same segment by making sure that both arrays are
either local or global variables.

EXAMPLE

DIM CTRL(10),DAT(10)
CTRL(0) = 0 : DAT(0) = &H11 ' Byte 0 : Address, Hex 11
CTRL(1) = 0 : DAT(1) = 2 ' Byte 1 : Function 2 (RIS)
CTRL(2) = 1 : DAT(2) = &HC4 ' Bytes 2,3 : Start, 196
CTRL(3) = 1 : DAT(3) = &H16 ' Bytes 4,5 : Length, 22
CTRL(4) = 2 ' End of String
CALL MBDRV(MB.SNDUSR, STATUS, B, DAT(0), CTRL(0), B)
IF STATUS<>0 THEN PRINT"Send --- "STATUS:STOP
ADDR = 0 : FC = 0 : RCVL = 0 ' Initialize variables that

will be returned by RCVUSR
CALL MBDRV(MB.RCVUSR, STATUS, ADDR, FC, RCVL, DAT(0))

This example shows the procedure used to send command number 2, "Read Input Status". Of
course, you would normally use the built-in function RDIS to do this, but it makes a good
example. The equivalent RDIS call is:

DIM INTAR(5)
REG = 100197
CT = 22
CALL MBDRV(MB.RDIS, STATUS, REG, CT, INTAR(0), B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

First, the code fragment initializes the control and data arrays. The final string to be sent is: 11
02 00 C4 00 16 + checksum. The control array is therefore set to Byte (0), Byte (0), Word (1),

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 33

Word(1), End (2). This means that Elements 0 and 1 of the Data array will be formatted as a
Bytes, and Elements 2 and 3 of the Data array will be formatted as words. As soon as Element
3 has been appended, the string will be sent.

After transmitting the request, the code fragment awaits a reply using the RCVUSR command.
If all goes well, the modbus device's reply will be stored in the DAT array, along with the return
address in ADDR, return Function Code in FC, and received length in RCVL.

Important Note. If you are planning to design your own command strings, it is very important
to note the address mapping. Normally, this function is performed automatically by the Driver
before the message is transmitted, but you must perform the same mapping for your own
messages.

In this case, though the call is asking for values beginning at address 10197, the actual address
word sent is 196 (decimal). Process Control Addresses are always sent with their "range" digit
(1xxxx in this case) removed. Further, modbus internal addresses actually start from 0, although
they are normally specified beginning at 1. Hence, location 10197 actually corresponds to
internal location 196.

MODBUS Communications Driver - Functions

Page 34 March 21, 1993 Revision 2.100

SETDEL --- Set Communications Delays

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 11 Function Number Integer
STATUS Error Return Integer
ARG1 "Long" Delay Integer
ARG2 "Quiet" Delay Integer
ARG3 Delay Multiplier Integer
ARG4

DESCRIPTION

The modbus protocol does not have a specific packet-framing system. Instead, it relies on
delays to indicate the beginning and end of transmissions. The SETDEL command allows you
to adjust the delay periods used by MBDRV.

Long Delay. The "Long" Delay determines how long MBDRV will wait for a reply to a
command request. If you send a command and the modbus device does not begin its reply
before the Long Delay has elapsed, MBDRV will return the Timeout error code, -1. The Long
Delay value defaults to 800, which is approximately equivalent to 5 seconds.

Quiet Delay. The "Quiet" Delay determines the "end of message" delay. Since the Process
Control Protocol does not have a specific way of marking the end of a message, this delay is
used to regulate the length of time MBDRV will wait before it decides that the end of the
transmission has been reached. The default "Quiet" delay value is 10, which is approximately
equal to 500ms.

In practice, when MBDRV is waiting for an incoming string, it begins by counting down the
Long delay. When the first character arrives, the delay timer is reset to the "Quiet" delay. Each
succeeding character restarts the timer with the "Quiet" delay. MBDRV detects the end of the
message when the incoming line has been quiet for a long enough period to exhaust the Quiet
delay.

Officially, the Process Control Protocol specifies that the Quiet delay can be as short as 4ms (for
9600 baud). Experience, however, has proven that delays that short may result in truncated
messages. Since the Driver is designed to operate "one message and reply at a time", longer
"Quiet" delays have no harmful effect except to slow MBDRV's response time slightly.

Delay Multiplier . The Delay Multiplier is a constant that determines the "slope" of the delay
timer's response. Its default value of 800 (about 50ms per unit) should not normally be altered,
unless you need to set the delay to an exact time value. Please call us if you need to set the
delay timer to a specific time.

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 35

If you wish to change one or two of the delay constants without disturbing the others, simply
pass -1 as the new value for the delay(s) that you do not wish to change.

Sadly, there is no hard and fast rule for the proper delay times to use. In fact, delay times can
be one of the most frustrating aspects of the modbus protocol. Though the defaults should be
adequate for most situations, you will probably wish to experiment to determine the best
tradeoff between response speed and reliability.

EXAMPLE

NQD = 15 : DMY = -1
CALL MBDRV(MB.SETDEL, STATUS, DMY, NDQ, DMY, B)

This example sets the Quiet delay to 15, leaving the Long delay and Delay Multiplier
unchanged.

MODBUS Communications Driver - Functions

Page 36 March 21, 1993 Revision 2.100

CHNPOR --- Set Comm. Parameters

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 12 Function Number Integer
STATUS Error Return Integer
ARG1 Port Number Integer
ARG2 Baud Rate Code Integer
ARG3
ARG4

DESCRIPTION

Use this command to change the Port and Speed used by the Driver. ARG1, the port number,
can be either 1 (for COM1:) or 2 (for COM2:). MBDRV modbus "RTU Mode"
communications are always set for 8 data bits, 1 stop bit, no parity.

The Baud Rate code must be an integer from 0 to 7. Here is a table of the baud rate values:

Cod
e

Baud Rate

0 110

1 150

2 300

3 600

4 1200

5 2400

6 4800

7 9600

EXAMPLE

NPR = 2
BAU = 6
CALL MBDRV(MB.CHNPOR, STATUS, B, NPR, BAU, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 37

PRINT"Port 2 Selected at 9600 baud." : PRINT

MODBUS Communications Driver - Functions

Page 38 March 21, 1993 Revision 2.100

RCVUSR --- Receive Incoming Command

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 13 Function Number Integer
STATUS Error Return Integer
ARG1 Address Return Integer
ARG2 Function Code Return Integer
ARG3 Receive Length Return Integer
ARG4 Data Return Integer Array

DESCRIPTION

This command is normally used for one of two purposes: retrieving answers to commands sent
via SNDUSR, or awaiting incoming commands in Slave Mode. It simply waits for and returns
an incoming Process Control Protocol data frame. If no frame arrives within the time specified
by the "Long" delay (see SETDEL), MBDRV will return a STATUS value of -1 (Timeout
Error).

If a correctly-formatted string does arrive, MBDRV will pass back all the information needed to
decode it. First, ARG1 will return the "Destination Address" specified in the incoming frame,
ARG2 the Function Code, ARG3 the frame length in bytes, and ARG4 the frame itself.
MBDRV also tests the frame's Checksum and returns a STATUS of 1 (Checksum Error) if the
checksum is incorrect.

The Data Return array, ARG4, contains the incoming frame in packed bytes. In other words,
the complete incoming string is saved in ARG4 starting at the LSB of ARG4(0). You will
probably wish to use the BRKRCV command to unpack the command into bytes and words as
appropriate. Since RCVUSR returns both the Destination Address and the Command Number,
you can design different handlers for each Node and Command number.

Important Note. Make sure that the Data Return array ARG4 is dimensioned large enough to
accomodate the longest incoming frame that you expect to receive. Generally, you should allow
for up to 255 bytes (128 integer elements) of incoming data.

If you have sent a user-constructed command with the SNDUSR command and are using
RCVUSR to retrieve the reply, be sure to call RCVUSR as quickly as possible after SNDUSR
returns to ensure that no incoming bytes are lost.

If you are using RCVUSR to await command codes from a modbus "Master" device, you will
probably wish to place the CALL in a loop that repeats until a legal incoming frame is detected.

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 39

EXAMPLE

DIM RCVAR(130) ' Slave Mode example
ADDR = 0 : FC = 0 : RCVL = 0
STATUS = -1
WHILE STATUS = -1
 CALL MBDRV(MB.RCVUST, STATUS, ADDR, FC, RCVL, RCVAR(0))
 WEND
PRINT"Received command number"FC" addressed to node"ADDR

MODBUS Communications Driver - Functions

Page 40 March 21, 1993 Revision 2.100

BRKRCV --- Dissect Incoming Frame

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 14 Function Number Integer
STATUS Error Return Integer
ARG1 Frame Length Integer
ARG2 Control Array Integer Array
ARG3 Frame Array Integer Array
ARG4 Output Array Integer Array

DESCRIPTION

The BRKRCV command is designed to break up the data in an incoming command or reply
frame into its component parts. It basically performs the inverse of the SNDUSR command's
assembly process. Like SNDUSR, BRKRCV processes all of the elements in the Frame Array
one at a time, breaking them up into the elements of the Output Array according to the elements
of the Control array.

Each element of the Control array corresponds to one element of the Output array. The Control
array elements are interpreted as bit masks: Bit 2 is the Byte / Word selector, and Bit 3 is the
End marker. MBDRV will proceed through the returned frame one byte or word at a time as
indicated by the Control array, writing the extracted data into the Output array one element for
each step.

If Bit 2 of the current Control array element is 0, MBDRV will copy the next byte of the source
frame into the next Output array element. Note that bytes are treated as unsigned 8-bit integers,
so the values returned for Byte elements range from 0 to 255. If Bit 2 is 1, MBDRV will
transfer a Word by swapping and copying the next two bytes of the source frame into the next
element of the Output array.

Bit 3 marks the end of the Control list. If any source frame bytes are left, they will be copied
using the last valid Control word before the End marker. This feature is useful for commands
like RDIS and RDOR, where you will want to copy all data after the header information as
words, but you may not know exactly how many bytes are actually going to be in the frame
until runtime. In this case, just make sure that the last two elements of the control array are
01xx and 10xx binary respectively.

Note: BRKRCV examines only Bits 2 and 3 of the Control array elements. This
can be important, because it allows you to place the SNDUSR and
BRKRCV control masks into the same array for user-defined commands.
BRKRCV never alters the contents of the Control array.

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 41

IMPORTANT! When using the BRKRCV command, it is crucial that the Control, Frame, and
Output Arrays be in the same 80x86 data segment. This is normally not a problem unless you
are using a language like Quick Basic or Turbo Pascal, languages that often place data in
multiple data segments.

If you are using a language that does not allow you to control segment allocation, you should
take precautions. For example, you could copy the Control, Frame, and Output array contents
into separate vectors of a three-dimensional array (such arrays are always kept in a single
segment). In Turbo Pascal, you can generally force the same segment by making sure that all
three arrays are either local or global variables.

EXAMPLE

Suppose that you have used RCVUSR to retrieve the following incoming command string (in
Hex): 16 10 00 87 00 02 04 00 0A 01 02

RCVUSR will return (in decimal) ADDR = 22, FC = 16 (Write Multiple Registers), RCVL =
11. Suppose also that the frame data is stored in an array called FRAR. The following code
segment is designed to process the Write Multiple Registers command. In a practical
application, this might be used to accept data written into the IBM PC by the modbus device.

DIM CTLAR(8),OUTAR(128)
CTLAR(0) = 0 ' Byte 0 : Address
CTLAR(1) = 0 ' Byte 1 : Function Code
CTLAR(2) = 4 ' Bytes 2,3 : Start Address
CTLAR(3) = 4 ' Bytes 4,5 : Quantity
CTLAR(4) = 0 ' Byte 6 : Byte Count
CTLAR(5) = 4 ' Bytes 7,8 : First Data
CTLAR(6) = 8 ' End of string
CALL MBDRV(MB.BRKRCV, STATUS, RCVL, CTLAR(0), FRAR(0),
OUTAR(0))

After the BRKRCV command returns, OUTAR will contain:

Element Contents
(Decimal)

0 22 Destination Address

1 16 Function Code (Write Multiple
Registers)

2 135 Starting Address (Equivalent to
Holding Register 40136)

MODBUS Communications Driver - Functions

Page 42 March 21, 1993 Revision 2.100

3 2 Number of Values

4 4 Byte Count

5 10 Data Value 1 (for 40136)

6 258 Data Value 2 (for 40137)

When BRKRCV hits element 6 of the Control array (the End flag), it will interpret all
remaining bytes of the incoming frame according to the last Control word. In this case, the last
Control word means "Move Word", so all of the remaining data bytes, regardless of how many
there are, will be copied as words into the Output array starting at element 6.

Note that this example implies "Slave Mode" operation. In other words, the modbus device
issues the Write Multiple Registers command to the IBM PC and awaits a reply. Therefore, it is
very important that you transmit the proper acknowledgement string using SNDUSR.
Otherwise, the modbus device will "time out", and may either report an error condition or begin
retrying the operation.

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 43

SRBCONV --- Convert String to Register and Bit

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 15 Function Number Integer
STATUS Error Return Integer
ARG1 Input String String
ARG2 Return Register Unsigned Integer
ARG3 Return Bit Integer
ARG4

DESCRIPTION

Since BASIC provides no capability to convert an octal string to binary, ACS has provided two
functions to handle conversion and error checking on octal input strings.

SRBCONV converts a string in the form "register.bit" to a register number in ARG2 and a bit
number in ARG3. It also checks that ARG2 is less than or equal to 37777 (Octal) and that
ARG3 is less than or equal to 17 (Octal).

If the string contains illegal characters, or if the return values are illegal, STATUS will be
nonzero. If the conversion was successful, STATUS will be returned as zero.

This function is included mainly for compatibility with the Reliance Electric AutoMate™
system, which makes extensive use of octal addressing.

EXAMPLE

REG = 0
BIT = 0
INPUT"Enter point number";I$
CALL MBDRV(MB.SRBCONV, STATUS, I$, REG, BIT, B)
IF STATUS<>0 THEN PRINT"Illegal Point Number":STOP
PRINT"Point decoded as "OCT$(REG)"."OCT$(BIT)

MODBUS Communications Driver - Functions

Page 44 March 21, 1993 Revision 2.100

SRCONV --- Convert String to Register

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 16 Function Number Integer
STATUS Error Return Integer
ARG1 Input String String
ARG2 Return Register Unsigned Integer
ARG3
ARG4

DESCRIPTION

Converts an octal string to a binary register number returned in ARG2. If the string contains
illegal characters, or if ARG2 is greater than 37777 (Octal), STATUS will be returned as
nonzero.

This function is included mainly for compatibility with the Reliance Electric AutoMate™
system, which makes extensive use of octal addressing.

EXAMPLE

REG = 0
INPUT"Enter register number";I$
CALL MBDRV(B.SRCONV, STATUS, I$, REG, B, B)
IF STATUS<>0 THEN PRINT"Illegal register number.":STOP
PRINT"Register decoded as "OCT$(REG)

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 45

WORDAR --- Break Word into Array

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 17 Function Number Integer
STATUS Error Return Integer
ARG1 Input Value Integer
ARG2 Output Array Integer Array
ARG3
ARG4

DESCRIPTION

This command splits an integer into its 16 component bits. It stores the bits in the first sixteen
elements of the target array. Bit 0 (the least significant bit) is assigned to element 0 of the
array.

EXAMPLE

REG = 40221
REGCT = 1
REGVAL = 0
DIM BAR(16)
CALL MBDRV(MB.RDOR, STATUS, REG, REGCT, REGVAL, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
CALL MBDRV(MB.WORDAR, STATUS, REGVAL, BAR(0), B, B)
PRINT"Register 40221's value in binary: ";
FOR LA=15 TO 0 STEP -1
 IF BAR(LA) THEN PRINT"1"; ELSE PRINT"0";
NEXT LA:PRINT

MODBUS Communications Driver - Functions

Page 46 March 21, 1993 Revision 2.100

ARWORD --- Assemble Array into Word

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 18 Function Number Integer
STATUS Error Return Integer
ARG1 Input Array Integer Array
ARG2 Output Value Integer
ARG3
ARG4

DESCRIPTION

This function is the converse of WORDAR. It packs the first sixteen elements of the source
array ARG1 into the destination integer ARG2. Element 0 of ARG1 determines the status of
Bit 0 of the destination integer.

ARWORD checks each of the first 16 elements of the source array in turn. If the element is
nonzero, that bit of the target integer will be set. If the element is zero, the target bit will be
cleared.

EXAMPLE

Assume array BAR(16) has been initialized to the desired bit pattern...

REG = 40221
REGCT = 1
REGVAL = 0
CALL MBDRV(MB.ARWORD, STATUS, BAR(0), REGVAL, B, B)
CALL MBDRV(MB.WRSR, STATUS, REG, REGVAL, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Register 40221 set to"REGVAL

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 47

STEXT --- Send Text to Port

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 19 Function Number Integer
STATUS Error Return Integer
ARG1 String to Send String
ARG2
ARG3
ARG4

DESCRIPTION

Sends an arbitrary text string to the serial port at the current baud rate. Strings are always sent
with one stop bit and no parity.

You may wish to use this command to send dialing strings to a modem. Any reply from the
destination device will be lost. STATUS will return -3 if the string could not be transmitted for
some reason.

EXAMPLE

STR$ = "AT D 1 800 555 1212" + CHR$(13) + CHR$(10)
CALL MBDRV(B.STEXT, STATUS, STR$, B, B, B)
IF STATUS<>0 THEN PRINT"Communication Error "STATUS:STOP
PRINT"Dialing..."

MODBUS Communications Driver - Functions

Page 48 March 21, 1993 Revision 2.100

IOMAP --- Control I/O Mapping

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 20 Function Number Integer
STATUS Error Return Integer
ARG1 Flag Integer
ARG2
ARG3
ARG4

DESCRIPTION

Normally, MBDRV "maps" the Register and Coil addresses that you pass to conform to the
Protocol's specifications. For example, if you refer to Holding Register 40127, the actual binary
address transmitted by MBDRV will be 136, as defined by the Protocol.

However, if you are not working with Gould equipment, or if you need to control the actual
transmitted addresses, you can disable address mapping with this command.

Address Mapping is enabled by default. To disable Address Mapping, call IOMAP with ARG1
equal to 0. Any nonzero value enables mapping.

EXAMPLE

FLG = 0
CALL MBDRV(MB.IOMAP, STATUS, FLG, B, B, B)
PRINT"Address Mapping Disabled."

MODBUS Communications Driver - Functions

Revision 2.100 March 21, 1993 Page 49

OPPAR --- Other Port Parameters

SYNOPSIS

CALL MBDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 21 Function Number Integer
STATUS Error Return Integer
ARG1 Parity Integer
ARG2 Stops Integer
ARG3 Data size Integer
ARG4

DESCRIPTION

This function is used to set serial port parameters not covered by the CHNPOR command.

ARG1 can be 0 = No Parity, 1 = Odd Parity, or 2 = Even Parity.

ARG2 can be 1 = 1 Stop Bit, 2 = 2 Stop Bits.

ARG3 can be 7 = 7 Data Bits or 8 = 8 Data Bits.

Since the modbus protocol operates in pure binary, you should normally use 8 data bits. The
other parameters will be determined by your target device.

EXAMPLE

PAR = 2 ' Even Parity
STP = 1 ' 1 Stop Bit
DAT = 8 ' 8 Data Bits
CALL MBDRV(MB.OPPAR, STATUS, PAR, STP, DAT, B)
IF STATUS<>0 THEN
PRINT"Illegal Communications Setup "STATUS:STOP

MODBUS Communications Driver - Functions

Page 50 March 21, 1993 Revision 2.100

KEYPORT --- Set Hardware Key port

SYNOPSIS

CALL BASDRV(FNO, STATUS, ARG1, ARG2, ARG3, ARG4)
FNO = 22 Function Number Integer
STATUS Return Code Integer
ARG1 Hardware Key Port Integer
ARG2
ARG3
ARG4

DESCRIPTION

By default, the Driver assumes that the Hardware Key is located on LPT1. However,
you can tell the Driver to look for the Key on another parallel printer port with this
command. ARG1 selects the port where the Key is located and can range from 1 to 3.

When you execute the keyport command, the Driver will immediately try to locate the
Key on the new port. If the Key is not found, the Driver will return a STATUS value of
-2.

EXAMPLE

' Select LPT2 for Hardware Key
PORTN = 2
CALL BASDRV(B.KEYPORT, STATUS, PORTN, B, B, B)
IF STATUS=-2 THEN PRINT"Hardware Key Not Detected.":STOP

